1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Native point defects and dangling bonds in α-Al2O3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/4/10.1063/1.4784114
1.
1. Fundamentals of III-V Semiconductor MOSFETs, edited by S. Oktyabrsky and P. D. Ye (Springer, 2010).
2.
2. E. J. Kim, L. Wang, P. M. Asbeck, K. C. Saraswat, and P. C. McIntyre, Appl. Phys. Lett. 96, 012906 (2010).
http://dx.doi.org/10.1063/1.3281027
3.
3. B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. V. de Walle, and P. C. McIntyre, Appl. Phys. Lett. 96, 152908 (2010).
http://dx.doi.org/10.1063/1.3399776
4.
4. G. W. Paterson, S. J. Bentley, M. C. Holland, I. G. Thayne, J. Ahn, R. D. Long, P. C. McIntyre, and A. R. Long, J. Appl. Phys. 111, 104112 (2012).
http://dx.doi.org/10.1063/1.4720940
5.
5. J. Hu and H. -S. P. Wong, J. Appl. Phys. 111, 044105 (2012).
http://dx.doi.org/10.1063/1.3686628
6.
6. Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, and C. C. Tsai, Appl. Phys. Lett. 93, 053504 (2008).
http://dx.doi.org/10.1063/1.2969282
7.
7. N. Nepal, N. Y. Garces, D. J. Meyer, J. K. Hite, M. A. Mastro, and C. R. Eddy, Jr., Appl. Phys. Express 4, 055802 (2011).
http://dx.doi.org/10.1143/APEX.4.055802
8.
8. K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 68, 085110 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085110
9.
9. J. Carrasco, J. R. B. Gomes, and F. Illas, Phys. Rev. B 69, 064116 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.064116
10.
10. N. D. M. Hine, K. Frensch, W. M. C. Foulkes, and M. W. Finnis, Phys. Rev. B 79, 024112 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.024112
11.
11. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245202
12.
12. M. Choi, F. Oba, and I. Tanaka, Appl. Phys. Lett. 98, 172901 (2011).
http://dx.doi.org/10.1063/1.3583460
13.
13. M. Choi, F. Oba, and I. Tanaka, Phys. Rev. B 83, 214107 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.214107
14.
14. A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, Phys. Rev. B 81, 085212 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085212
15.
15. J. L. Lyons, A. Janotti, and C. G. Van de Walle, Phys. Rev. Lett. 108, 156403 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.156403
16.
16. P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, Phys. Rev. Lett. 103, 245501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.245501
17.
17. D. Liu, S. J. Clark, and J. Robertson, Appl. Phys. Lett. 96, 032905 (2010).
http://dx.doi.org/10.1063/1.3293440
18.
18. J. R. Weber, A. Janotti, and C. G. Van de Walle, Microelectron. Eng. 86, 1756 (2009).
http://dx.doi.org/10.1016/j.mee.2009.03.059
19.
19. J. R. Weber, A. Janotti, and C. G. Van de Walle, J. Appl. Phys. 109, 033715 (2011).
http://dx.doi.org/10.1063/1.3544310
20.
20. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
21.
21. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
22.
22. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
23.
23. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
24.
24. R. H. French, J. Am. Ceram. Soc. 73, 477 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06541.x
25.
25. A. I. Kuznetsov, V. N. Abramov, V. V. Mürk, and B. P. Namozov, Sov. Phys. Solid State 33, 1126 (1991).
26.
26. R. E. Newnham and Y. M. de Haan, Z. Kristallogr. 117, 235 (1962).
http://dx.doi.org/10.1524/zkri.1962.117.2-3.235
27.
27. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
28.
28. F. Oba, M. Choi, A. Togo, and I. Tanaka, Sci. Technol. Adv. Mater. 12, 034302 (2011).
http://dx.doi.org/10.1088/1468-6996/12/3/034302
29.
29. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.016402
30.
30. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011).
http://dx.doi.org/10.1002/pssb.201046289
31.
31. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
32.
32. R. Evarestov, E. Blokhin, D. Gryaznov, E. A. Kotomin, R. Merkle, and J. Maier, Phys. Rev. B 85, 174303 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.174303
33.
33. D. Ghosh and D. A. R. Kay, J. Electrochem. Soc. 124, 1836 (1977).
http://dx.doi.org/10.1149/1.2133172
34.
34. L. Kleinman, Phys. Rev. B 24, 7412 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.7412
35.
35. J. R. Weber, A. Janotti, P. Rinke, and C. G. Van de Walle, Appl. Phys. Lett. 91, 142101 (2007).
http://dx.doi.org/10.1063/1.2793184
36.
36. C. G. Van de Walle and R. A. Street, Phys. Rev. B 49, 14766 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14766
37.
37. P. E. Blöchl and J. H. Stathis, Phys. Rev. Lett. 83, 372 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.372
38.
38. P. E. Blöchl and J. H. Stathis, Physica B 273–274, 1022 (1999).
http://dx.doi.org/10.1016/S0921-4526(99)00628-6
39.
39. M. Esposto, S. Krishnamoorthy, D. N. Nath, S. Bajaj, T.-H. Hung, and S. Rajan, Appl. Phys. Lett. 99, 133503 (2011).
http://dx.doi.org/10.1063/1.3645616
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4784114
Loading
/content/aip/journal/jap/113/4/10.1063/1.4784114
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4784114
2013-01-22
2014-10-23

Abstract

We performed hybrid functional calculations of native point defects and dangling bonds (DBs) in α-Al2O3 to aid in the identification of charge-trap and fixed-charge centers in Al 2O3/III-V metal-oxide-semiconductor structures. We find that Al vacancies ( ) are deep acceptors with transition levels less than 2.6 eV above the valence band, whereas Al interstitials (Al i ) are deep donors with transition levels within ∼2 eV of the conduction band. Oxygen vacancies ( ) introduce donor levels near midgap and an acceptor level at ∼1 eV below the conduction band, while oxygen interstitials (O i ) are deep acceptors, with a transition level near the mid gap. Taking into account the band offset between α-Al2O3 and III-V semiconductors, our results indicate that and Al DBs act as charge traps (possibly causing carrier leakage), while , Al i , O i , and O DBs act as fixed-charge centers in α-Al2O3/III-V metal-oxide-semiconductor structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4784114.html;jsessionid=1b3nhrs9d1dys.x-aip-live-06?itemId=/content/aip/journal/jap/113/4/10.1063/1.4784114&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Native point defects and dangling bonds in α-Al2O3
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4784114
10.1063/1.4784114
SEARCH_EXPAND_ITEM