1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Detection of defect states in low-k dielectrics using reflection electron energy loss spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/4/10.1063/1.4788980
1.
1. G. Haase, J. Appl. Phys. 105, 44908 (2009).
http://dx.doi.org/10.1063/1.3073989
2.
2. International Technology Roadmap for Semiconductors (ITRS): 2009 (Semiconductor Industry Association, San Jose, CA, 2009): http://www.itrs.net/Links/2009ITRS/Home2009.htm.
3.
3. Y. Ou, P. Wang, M. He, T. Lu, P. Leung, and T. Spooner, J. Electrochem. Soc. 155, G283 (2008).
http://dx.doi.org/10.1149/1.2992125
4.
4. R. Wang, K. Chang-Liao, T. Wang, M. Chang, C. Wang, C. Lin, C. Lee, C. Chiu, and K. Wu, Thin Solid Films 517, 1230 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.06.051
5.
5. C. Chiang, I. Ko, M. Chen, Z. Wu, Y. Lu, S. Jang, and M. Liang, J. Electrochem. Soc. 151, G606 (2004).
http://dx.doi.org/10.1149/1.1777510
6.
6. F. Chen and M. Shinovsky, J. Appl. Phys. 108, 54107 (2010).
http://dx.doi.org/10.1063/1.3476292
7.
7. J. McPherson, Microelectron. Rel. 52, 1753 (2012).
http://dx.doi.org/10.1016/j.microrel.2012.06.007
8.
8. J. Llyod, E. Liniger, and T. Shaw, J. Appl. Phys. 98, 84109 (2005).
http://dx.doi.org/10.1063/1.2112171
9.
9. F. Chen and M. Shinovsky, IEEE Trans. Elect. Dev. 56, 2 (2009).
http://dx.doi.org/10.1109/TED.2008.2008680
10.
10. L. Zhou, M. Pantouvaki, K. Croes, Z. Tokei, Y. Barbarin, C. Wilson, M. Baklanov, G. Beyer, and C. Claeys, Appl. Phys. Lett. 99, 222110 (2011).
http://dx.doi.org/10.1063/1.3664405
11.
11. J. Atkin, E. Cartier, T. Shaw, R. Laibowitz, and T. Heinz, Appl. Phys. Lett. 93, 122902 (2008).
http://dx.doi.org/10.1063/1.2990648
12.
12. G. Gischia, K. Croes, G. Groeseneken, Z. Tokei, V. Afanas'ev, and L. Zhao, in Proceedings of the IEEE International Reliability Physics Symposium (IRPS) 2010, p. 5A2.
13.
13. M. Vilmay, D. Roy, F. Volpi, and J. Chaix, Microelectron. Eng. 85, 2075 (2008).
http://dx.doi.org/10.1016/j.mee.2008.04.045
14.
14. J. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
15.
15. J. Yeargan and H. Taylor, J. Appl. Phys. 39, 5600 (1968).
http://dx.doi.org/10.1063/1.1656022
16.
16. M. Lenzlinger and E. Snow, J. Appl. Phys. 40, 278 (1969).
http://dx.doi.org/10.1063/1.1657043
17.
17. K. Ishikawa, Y. Yamaoka, M. Nakamura, Y. Yamazaki, S. Yamasaki, Y. Ishikawa, and S. Samukawa, J. Appl. Phys. 99, 83305 (2006).
http://dx.doi.org/10.1063/1.2191567
18.
18. B. Bittel, P. Lenahan, and S. King, Appl. Phys. Lett. 97, 63506 (2010).
http://dx.doi.org/10.1063/1.3478235
19.
19. J. Lauer, H. Sinha, M. Nichols, G. Antonelli, Y. Nishi, and J. Shohet, J. Electrochem. Soc. 157, G177 (2010).
http://dx.doi.org/10.1149/1.3435285
20.
20. H. Sinha, G. Antonelli, G. Jiang, Y. Nishi, and J. Shohet, J. Vac. Sci. Technol. A 29, 30602 (2011).
http://dx.doi.org/10.1116/1.3570818
21.
21. H. Sinha, M. Nichols, A. Sehgal, M. Tomoyasu, N. Russell, G. Antonelli, Y. Nishi, and J. Shohet, J. Vac. Sci. Technol. A 29, 10601 (2011).
http://dx.doi.org/10.1116/1.3520433
22.
22. H. Ren, M. Nichols, G. Jiang, G. Antonelli, Y. Nishi, and J. Shohet, Appl. Phys. Lett. 98, 102903 (2011).
http://dx.doi.org/10.1063/1.3562307
23.
23. H. Ren, G. Jiang, G. Antonelli, Y. Nishi, and J. Shohet, Appl. Phys. Lett. 98, 252902 (2011).
http://dx.doi.org/10.1063/1.3601922
24.
24. M. Nichols, H. Sinha, C. Wiltbank, G. Antonelli, Y. Nishi, and J. Shohet, Appl. Phys. Lett. 100, 112905 (2012).
http://dx.doi.org/10.1063/1.3693526
25.
25. H. Sinha, H. Ren, M. Nichols, J. Lauer, M. Tomoyasu, N. Russell, G. Jiang, G. Antonelli, N. Fuller, S. Engelmann, Q. Lin, V. Ryan, Y. Nishi, and J. Shohet, J. Appl. Phys. 112, 111101 (2012).
http://dx.doi.org/10.1063/1.4751317
26.
26. K. Tanbara and Y. Kamigaki, J. Electrochem. Soc. 157, G95 (2010).
http://dx.doi.org/10.1149/1.3301619
27.
27. V. Afanas'ev, K. Keunen, A. Stesmans, M. Jivanescu, Z. Tokei, M. Baklanov, and G. Beyer, Microelectron. Eng. 88, 1503 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.077
28.
28. S. Shamuilia, V. Afanas'ev, P. Somers, A. Stesmans, Y. Li, Z. Tokei, G. Groeseneken, and K. Maex, Appl. Phys. Lett. 89, 202909 (2006).
http://dx.doi.org/10.1063/1.2360893
29.
29. J. Atkin, D. Song, T. Shaw, E. Cartier, R. Laibowitz, and T. Heinz, J. Appl. Phys. 103, 94104 (2008).
http://dx.doi.org/10.1063/1.2907958
30.
30. E. Martinez, C. Guedj, D. Mariolle, C. Licitra, O. Renault, F. Bertin, A. Chabli, G. Imbert, and R. Delsol, J. Appl. Phys. 104, 73708 (2008).
http://dx.doi.org/10.1063/1.2988139
31.
31. S. King, M. French, M. Jaehnig, M. Kuhn, B. Boyanov, and B. French, J. Vac. Sci. Technol. B 29, 51207 (2011).
http://dx.doi.org/10.1116/1.3633691
32.
32. S. King, M. French, M. Jaehnig, M. Kunh, and B. French, Appl. Phys. Lett. 99, 202903 (2011).
http://dx.doi.org/10.1063/1.3660248
33.
33. S. King and J. Gradner, Microelectron. Rel. 49, 721 (2009).
http://dx.doi.org/10.1016/j.microrel.2009.04.006
34.
34. S. King, D. Jacob, D. Vanleuven, B. Colvin, J. Kelly, M. French, J. Bielefeld, D. Dutta, M. Liu, and D. Gidley, ECS J. Solid State Sci. Technol. 1, N115 (2012).
http://dx.doi.org/10.1149/2.021206jss
35.
35. S. King, R. Chu, G. Xu, and J. Huening, Thin Solid Films 518, 4898 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.03.031
36.
36. E. Andideh, M. Lerner, G. Palmrose, S. El-Mansy, T. Scherban, G. Xu, and J. Blaine, J. Vac. Sci. Technol. B 22, 196 (2004).
http://dx.doi.org/10.1116/1.1640401
37.
37. A. Zangwill, Physics at Surfaces (Cambridge University Press, New York, 1988).
38.
38. A. Jablonski and C. J. Powell, Surf. Sci. Rep. 47, 33 (2002).
http://dx.doi.org/10.1016/S0167-5729(02)00031-6
39.
39. C. J. Powell and A. Jablonski, NIST Electron Effective-Attenuation-Length Database, Version 1.3 (SRD 82) (NIST, Gaithersburg, MD, 2011).
40.
40. C. Pantano and T. Madey, Appl. Surf. Sci. 7, 115 (1981).
http://dx.doi.org/10.1016/0378-5963(81)90065-9
41.
41. R. Zallen, The Physics of Amorphous Solids (Wiley-Interscience, New York, 1983).
42.
42. T. Mok and S. O'Leary, J. Appl. Phys. 102, 113525 (2007).
http://dx.doi.org/10.1063/1.2817822
43.
43. S. Miyazaki, Appl. Surf. Sci. 190, 66 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00841-8
44.
44. F. Bart, M. Gautier, J. Duraud, and M. Henriot, Surf. Sci. 274, 317 (1992).
http://dx.doi.org/10.1016/0039-6028(92)90837-V
45.
45. F. Bart, M. Gautier, F. Jollet, and J. Duraud, Surf. Sci. 306, 342 (1994).
http://dx.doi.org/10.1016/0039-6028(94)90076-0
46.
46. P. Poveda and A. Glachant, J. Non-Cryst. Sol. 216, 83 (1997).
http://dx.doi.org/10.1016/S0022-3093(97)00176-2
47.
47. P. Poveda and A. Glachant, Surf. Sci. 323, 258 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00676-8
48.
48. L. Garvie, P. Rez, J. Alvarez, and P. Buseck, Solid State Commun. 106, 303 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00021-0
49.
49. M. Shioji, T. Shiraishi, K. Takahashi, H. Nohira, K. Azuma, Y. Nakata, Y. Takata, S. Shin, K. Kobayashi, and T. Hattori, Appl. Phys. Lett. 84, 3756 (2004).
http://dx.doi.org/10.1063/1.1737793
50.
50. Z. Weinberg, G. Rubloff, and E. Bassous, Phys. Rev. B 19, 3107 (1979)
http://dx.doi.org/10.1103/PhysRevB.19.3107
51.
51. T. DiStefano and D. Eastman, Solid State Commun. 9, 2259 (1971).
http://dx.doi.org/10.1016/0038-1098(71)90643-0
52.
52. J. Thomas and S. Hofmann, J. Vac. Sci. Technol. A 3, 1921 (1985)
http://dx.doi.org/10.1116/1.572946
53.
53. E. Paparazzo, J. Phys. D 20, 1091 (1987).
http://dx.doi.org/10.1088/0022-3727/20/8/022
54.
54. G. Hochstrasser and J. Antonini, Surf. Sci. 32, 644 (1972).
http://dx.doi.org/10.1016/0039-6028(72)90192-6
55.
55. J. Antonini and G. Hochstrasser, Surf. Sci. 32, 665 (1972).
http://dx.doi.org/10.1016/0039-6028(72)90193-8
56.
56. E. O'Reilly and J. Robertson, Phys. Rev. B 27, 3780 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.3780
57.
57. N. Anderson, R. Vedula, P. Schultz, R. Ginhoven, and A. Strachan, Appl. Phys. Lett. 100, 172908 (2012).
http://dx.doi.org/10.1063/1.4707340
58.
58. M. Wilson and T. Walsh, J. Chem. Phys. 113, 9180 (2000)
http://dx.doi.org/10.1063/1.1320056
59.
59. A. Rudenko, F. Keil, M. Katsnelson, and A. Lichtenstein, Phys. Rev. B 84, 85438 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085438
60.
60. D. Winslow and C. Williams, J. Appl. Phys. 110, 114102 (2011).
http://dx.doi.org/10.1063/1.3662145
61.
61. A. Grill and V. Patel, J. Appl. Phys. 85, 3314 (1999).
http://dx.doi.org/10.1063/1.369677
62.
62. A. Grill, J. Appl. Phys. 93, 1785 (2003).
http://dx.doi.org/10.1063/1.1534628
63.
63. S. Gallis, V. Nikas, M. Huang, E. Eisenbraun, and A. Kaloyeros, J. Appl. Phys. 102, 24302 (2007).
http://dx.doi.org/10.1063/1.2753572
64.
64. M. Worsley, S. Bent, N. Fuller, T. Tai, J. Doyle, M. Rothwell, and T. Dalton, J. Appl. Phys. 101, 13305 (2007).
http://dx.doi.org/10.1063/1.2405123
65.
65. J. Bao, H. Shi, H. Huang, P. Ho, M. Goodner, M. Moinpour, and G. Kloster, J. Vac. Sci. Technol. B 26, 219 (2008).
http://dx.doi.org/10.1116/1.2834562
66.
66. H. Yamamoto, K. Asano, K. Ishikawa, M. Sekine, H. Hayashi, I. Sakai, T. Ohiwa, K. Takeda, H. Kondo, and M. Hori, J. Appl. Phys. 110, 123301 (2011).
http://dx.doi.org/10.1063/1.3671547
67.
67. T. Endo, S. Taniguchi, I. Inaba, M. Katoh, M. Hayashi, and K. Sugiyama, Jpn. J. Appl. Phys. Part 1 27, 710 (1988).
http://dx.doi.org/10.1143/JJAP.27.710
68.
68. M. Kumeda, H. Nagano, and T. Shimizu, Jpn. J. Appl. Phys. Part 1 29, 356 (1990).
http://dx.doi.org/10.1143/JJAP.29.356
69.
69. V. Afanas'ev, J. de Nijs, P. Balk, and J. Stesmans, J. Appl. Phys. 78, 6481 (1995).
http://dx.doi.org/10.1063/1.360534
70.
70. P. Marsik, P. Verdonck, D. De Roest, and M. Baklanov, Thin Solid Films 518, 4266 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.12.110
71.
71. A. Urbanowicz, K. Vanstreels, P. Verdonck, E. Van Besien, T. Christos, D. Shamiryan, S. De Gendt, and M. Baklanov, J. Vac. Sci. Technol. B 29, 32201 (2011).
http://dx.doi.org/10.1116/1.3572063
72.
72. S. King, R. Kern, M. Benjamin, J. Barnak, R. Nemanich, and R. Davis, J. Electrochem. Soc. 146, 3448 (1999).
http://dx.doi.org/10.1149/1.1392494
73.
73. A. Urbanowicz, K. Vanstreels, D. Shamiryan, S. De Gendt, and M. Baklanov, Electrochem. Sol. Stat. Lett. 12, H292 (2009).
http://dx.doi.org/10.1149/1.3139741
74.
74. M. Baklanov, L. Zhao, E. Van Besien, and M. Pantouvaki, Microelectron. Eng. 88, 990 (2011).
http://dx.doi.org/10.1016/j.mee.2010.12.077
75.
75. E. Van Besien, M. Pantouvaki, L. Zhao, D. De Roest, M. Baklanov, Z. Tokei, and G. Beyer, Microelectron. Eng. 92, 59 (2012).
http://dx.doi.org/10.1016/j.mee.2011.04.015
76.
76. V. Ngwan, C. Zhu, and A. Krishnamoorthy, Appl. Phys. Lett. 84, 2316 (2004).
http://dx.doi.org/10.1063/1.1688978
77.
77. A. Vairagar, S. Mhaisalkar, and A. Krishnamoorthy, Thin Solid Films 462, 325 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.05.082
78.
78. L. Skuja, J. Non-Cryst. Sol. 239, 16 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00720-0
79.
79. A. Grill, J. Appl. Phys. 94, 6697 (2003).
http://dx.doi.org/10.1063/1.1618358
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4788980
Loading
/content/aip/journal/jap/113/4/10.1063/1.4788980
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4788980
2013-01-25
2015-03-27

Abstract

Reflection electron energy loss spectroscopy (REELS) has been utilized to measure the band gap (Eg) and energy position of sub-gap defect states for both non-porous and porous low dielectric constant (low-k) materials. We find the surface band gap for non-porous k = 2.8–3.3 a-SiOC:H dielectrics to be ≅ 8.2 eV and consistent with that measured for a-SiO2 (Eg = 8.8 eV). Ar+ sputtering of the non-porous low-k materials was found to create sub-gap defect states at ≈ 5.0 and 7.2 eV within the band gap. Based on comparisons to observations of similar defect states in crystalline and amorphous SiO2, we attribute these sub-gap defect states to surface oxygen vacancy centers. REELS measurements on a porous low-k a-SiOC:H dielectric with k = 2.3 showed a slightly smaller band gap (Eg = 7.8 eV) and a broad distribution of defects states ranging from 2 to 6 eV. These defect states are attributed to a combination of both oxygen vacancy defects created by the UV curing process and carbon residues left in the film by incomplete removal of the sacrificial porogen. Plasma etching and ashing of the porous low-k dielectric were observed to remove the broad defect states attributed to carbon residues, but the oxygen vacancy defects remained.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4788980.html;jsessionid=ps38um5rf1e7.x-aip-live-03?itemId=/content/aip/journal/jap/113/4/10.1063/1.4788980&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Detection of defect states in low-k dielectrics using reflection electron energy loss spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4788980
10.1063/1.4788980
SEARCH_EXPAND_ITEM