Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/4/10.1063/1.4789389
1.
1. M. Telkes, Am. Miner. 35, 536 (1950).
2.
2. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
3.
3. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).
http://dx.doi.org/10.1002/anie.200900598
4.
4. A. D. LaLonde, Y. Pei, H. Wang, and G. J. Snyder, Mater. Today 14, 526 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70278-4
5.
5. K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 (2012).
http://dx.doi.org/10.1038/nature11439
6.
6. M. Ohta, H. Obara, and A. Yamamoto, Mater. Trans. 50, 2129 (2009).
http://dx.doi.org/10.2320/matertrans.MAW200918
7.
7. M. L. Liu, F. Q. Huang, L. D. Chen, and I. W. Chen, Appl. Phys. Lett. 94, 202103 (2009).
http://dx.doi.org/10.1063/1.3130718
8.
8. E. J. Skoug, J. D. Cain, and D. T. Morelli, Appl. Phys. Lett. 98, 261911 (2011).
http://dx.doi.org/10.1063/1.3605246
9.
9. E. Guilmeau, Y. Bréard, and A. Maignan, Appl. Phys. Lett. 99, 052107 (2011).
http://dx.doi.org/10.1063/1.3621834
10.
10. Z. H. Ge, B. P. Zhang, Y. X. Chen, Z. X. Yu, Y. Liu, and J. F. Li, Chem. Commun. 47, 12697 (2011).
http://dx.doi.org/10.1039/c1cc16368j
11.
11. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nature Mater. 11, 422 (2012).
http://dx.doi.org/10.1038/nmat3273
12.
12. B. J. Wuensch, Z. Kristallogr 119, 437 (1964).
http://dx.doi.org/10.1524/zkri.1964.119.5-6.437
13.
13. A. Pfitzner, M. Evain, and V. Petricek, Acta Cryst. B 53, 337 (1997).
http://dx.doi.org/10.1107/S0108768196014024
14.
14. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).
http://dx.doi.org/10.1143/APEX.5.051201
15.
15. X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. (in press), doi: 10.1002/aenm.201200650.
http://dx.doi.org/10.1002/aenm.201200650
16.
16. E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakata, and N. Ikeda, Nucl. Instrum. Methods Phys. Res. A 467–468, 1045 (2001).
http://dx.doi.org/10.1016/S0168-9002(01)00639-8
17.
17. A. Ohno, S. Sasaki, E. Nishibori, S. Aoyagi, M. Sakata, and B. B. Iversen, Phys. Rev. B 76, 064119 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.064119
18.
18. N. E. Johnson, J. R. Craig, and J. D. Rimstidt, Am. Miner. 73, 389 (1988).
19.
19. K. Friese, A. Grzechnik, E. Makovicky, T. Balić-Žunić, and S. Karup-Møller, Phys. Chem. Miner. 35, 455 (2008).
http://dx.doi.org/10.1007/s00269-008-0240-8
20.
20. E. Makovicky and S. Karup-Møller, N. Jb. Miner. Abh. 167, 89 (1994).
21.
21. A. Bentien, E. Nishibori, S. Paschen, and B. B. Iversen, Phys. Rev. B 71, 144107 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144107
22.
22. M. Christensen, N. Lock, J. Overgaard, and B. B. Iversen, J. Am. Chem. Soc. 128, 15657 (2006).
http://dx.doi.org/10.1021/ja063695y
23.
23. E. J. Skoug and D. T. Morelli, Phys. Rev. Lett. 107, 235901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.235901
24.
24. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, Nature 395, 876 (1998).
http://dx.doi.org/10.1038/27625
25.
25. B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus, Phys. Rev. B 63, 245113 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245113
26.
26. Z. Hiroi, J. Yamaura, and K. Hattori, J. Phys. Soc. Jpn. 81, 011012 (2012).
http://dx.doi.org/10.1143/JPSJ.81.011012
27.
27. D. W. Bullett, Phys. Chem. Miner. 14, 485 (1987).
http://dx.doi.org/10.1007/BF00308283
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4789389
Loading
/content/aip/journal/jap/113/4/10.1063/1.4789389
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4789389
2013-01-28
2016-09-29

Abstract

X-ray structural analysis and high-temperature thermoelectric properties measurements are performed on polycrystalline samples of artificial mineral Cu 12− x Ni x Sb4S13 tetrahedrite. Analysis of the atomic displacement parameter manifests low-energy vibration of Cu(2) out of CuS3 triangle plane. The vibration results in low lattice thermal conductivity of less than 0.5 W K−1 m−1. By tuning of the Ni composition x and decrease of electronic thermal conductivity, dimensionless thermoelectric figure of merit for x = 1.5 achieves 0.7 at 665 K, which is a considerably high value among p-type Pb-free sulfides. Because the tetrahedrite is an environmentally friendly material, it constitutes a good thermoelectric material for use in support of a sustainable society.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4789389.html;jsessionid=IrNNit3H6bQEkcBP1ODnLgkB.x-aip-live-03?itemId=/content/aip/journal/jap/113/4/10.1063/1.4789389&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/113/4/10.1063/1.4789389&pageURL=http://scitation.aip.org/content/aip/journal/jap/113/4/10.1063/1.4789389'
Right1,Right2,Right3,