1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/4/10.1063/1.4789602
1.
1. Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “ Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express 18, 26754 (2010).
http://dx.doi.org/10.1364/OE.18.026754
2.
2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “ Chalcogenide photonics,” Nature Photon. 5, 141148 (2011).
http://dx.doi.org/10.1038/nphoton.2011.309
3.
3. M. D. Pelusi, F. Luan, S. J. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “ Chalcogenide glass chip based nonlinear signal processing—OSA Technical Digest (CD),” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), p. IWC3.
4.
4. B. J. Eggleton, “ Chalcogenide photonics: Fabrication, devices and applications Introduction,” Opt. Express 18, 26632 (2010).
http://dx.doi.org/10.1364/OE.18.026632
5.
5. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “ Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18, 16206 (2010).
http://dx.doi.org/10.1364/OE.18.016206
6.
6. X. Bendaña, A. Polman, and F. J. García de Abajo, “ Single-photon generation by electron beams,” Nano Lett. 11, 50995103 (2011).
http://dx.doi.org/10.1021/nl1034732
7.
7. S. Juodkazis, T. Kondo, and H. Misawa, “ Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses,” Proc. SPIE 5662, 179184 (2004).
http://dx.doi.org/10.1117/12.596322
8.
8. G. Chen, H. Jain, M. Vlcek, and A. Ganjoo, “ Photoinduced volume change in arsenic chalcogenides by bandgap light,” Phys. Rev. B 74, 174203 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.174203
9.
9. M. I. Kozak, V. Y. Loya, N. P. Golub, and M. Y. Onis'ko, “ Mechanism of photoinduced nanodimensional expansion/contraction in glassy thin layers of As2S3,” Theor. Exp. Chem. 45, 6973 (2009).
http://dx.doi.org/10.1007/s11237-009-9066-9
10.
10. H. Fritzsche and H. Firtzsche, “ Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99(3 ), 153 (1996).
http://dx.doi.org/10.1016/0038-1098(96)00218-9
11.
11. K. Tanaka, “ Photoinduced deformations in chalcogenide glasses: Scalar and vectorial,” J. Optoelectron. Adv. Mater. 7(5 ), 25712580 (2005).
12.
12. J. Feinleib, J. P. DeNeufville, S. C. Moss, and S. R. Ovshinsky, “ Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254 (1971).
http://dx.doi.org/10.1063/1.1653653
13.
13. K. Tanaka and K. Shimakawa, “ Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B 246, 17441757 (2009).
http://dx.doi.org/10.1002/pssb.200982002
14.
14. I. Istvan, “ Photo- and ion-induced changes in amorphous chalcogenide films,” Ph.D. thesis (University of Debrecen, Hungary, 2007).
15.
15. J. De Neufville, S. Moss, and S. Ovshinsky, “ Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13(2 ), 191223 (1974).
http://dx.doi.org/10.1016/0022-3093(74)90091-X
16.
16. V. Gopal, “ Energy gap-refractive index interrelation,” Infrared Phys. 22(5 ), 255257 (1982).
http://dx.doi.org/10.1016/0020-0891(82)90052-5
17.
17. R. M. Kurtz, W. Lu, J. Piranian, T. Jannson, and A. O. Okorogu, “ The fast photorefractive effect and its application to vibrometry,” J. Hologr. Speckle 5, 149155 (2009).
http://dx.doi.org/10.1166/jhs.2009.1008
18.
18. V. K. Tikhomirov and S. R. Elliott, “ The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7(8 ), 1737 (1995).
http://dx.doi.org/10.1088/0953-8984/7/8/020
19.
19. M. Kowalyshen, “ Photoinduced dichroism in amorphous As2Se3 thin film,” Ph.D. thesis (University of Saskatchewan, Canada, 2010).
20.
20. V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “ All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 1124211247 (2006).
http://dx.doi.org/10.1364/OE.14.011242
21.
21. V. Lyubin, M. Klebanov, M. Veinger, I. Lyubina, and B. Sfez, “ Photoluminescence and photostructural transformations in neodymium-doped glassy chalcogenide films,” Opt. Mater. 28, 11151117 (2006).
http://dx.doi.org/10.1016/j.optmat.2005.06.012
22.
22. P. Anderson, “ Model for the electronic structure of amorphous semiconductors,” Phys. Rev. Lett. 34(15 ), 953955 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.953
23.
23. H. Fritzsche, “ Toward understanding the photoinduced changes in chalcogenide glasses,” Semiconductors 32, 850854 (1998).
http://dx.doi.org/10.1134/1.1187471
24.
24. S. Simdyankin, S. Elliott, Z. Hajnal, T. Niehaus, and T. Frauenheim, “ Simulation of physical properties of the chalcogenide glass As2S3 using a density-functional-based tight-binding method,” Phys. Rev. B 69, 144202 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.144202
25.
25. A. Andriesh, M. Iovu, and S. Shutov, Semiconducting Chalcogenide Glass II—Properties of Chalcogenide Glasses, 1st ed., Semiconductors and Semimetals, Vol. 79 (Elsevier, 2004).
26.
26. J. Singh and K. Tanaka, “ Photo-structural changes in chalcogenide glasses during illumination,” J. Mater. Sci.: Mater. Electron. 18, 423428 (2007).
http://dx.doi.org/10.1007/s10854-007-9226-4
27.
27. T. Suhara, H. Nishihara, and J. Koyama, “ Electron-beam-induced refractive-index change of amorphous semiconductors,” Jpn. J. Appl. Phys., Part 1 14, 10791080 (1975).
http://dx.doi.org/10.1143/JJAP.14.1079
28.
28. N. Nordman and O. Salminen, “ Thickness variations in amorphous As2S3 films induced by electron beam,” Solid State Commun. 100, 241244 (1996).
http://dx.doi.org/10.1016/0038-1098(96)00390-0
29.
29. N. Nordman and O. Nordman, “ Refractive index change caused by electron irradiation in amorphous AsS and AsSe thin films coated with different metals,” J. Appl. Phys. 90, 2206 (2001).
http://dx.doi.org/10.1063/1.1388862
30.
30. O. Nordman, N. Nordman, and V. Pashkevich, “ Refractive-index change caused by electrons in amorphous AsS and AsSe thin films doped with different metals by photodiffusion,” J. Opt. Soc. Am. B 18, 1206 (2001).
http://dx.doi.org/10.1364/JOSAB.18.001206
31.
31. K. Tanaka, “ Electron beam induced reliefs in chalcogenide glasses,” Appl. Phys. Lett. 70, 261 (1997).
http://dx.doi.org/10.1063/1.118356
32.
32. J. Perrin, J. Cazaux, and P. Soukiassian, “ Optical constants and electronic structure of crystalline and amorphous As2S3 in the 3 to 35 eV range,” Phys. Status Solidi B 62, 343350 (1974).
http://dx.doi.org/10.1002/pssb.2220620202
33.
33. R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum, New York, 1996).
34.
34. R. H. Ritchie, “ Plasmon losses by fast electron in thin films,” Phys. Rev. 106, 874881 (1957).
http://dx.doi.org/10.1103/PhysRev.106.874
35.
35. P. Nozieres and D. Pines, “ Electron interaction in solids: Chacteristic energy-loss spectrum,” Phys. Rev. 113, 12541267 (1959).
http://dx.doi.org/10.1103/PhysRev.113.1254
36.
36. M. Stöger-Pollach, “ Optical properties and bandgaps from low loss EELS: Pitfalls and solutions,” Micron 39, 10921110 (2008).
http://dx.doi.org/10.1016/j.micron.2008.01.023
37.
37. R. F. Egerton, “ Electron energy-loss spectroscopy in the TEM,” Rep. Prog. Phys. 72, 016502 (2009).
http://dx.doi.org/10.1088/0034-4885/72/1/016502
38.
38. J. Verbeeck and G. Bertoni, “ Deconvolution of core electron energy loss spectra,” Ultramicroscopy 109, 13431352 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.06.010
39.
39. F. J. García de Abajo, “ Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209275 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.209
40.
40. L. Zhang, S. Turner, and J. Verbeeck, “ Model-based determination of dielectric function by STEM low-loss EELS,” Phys. Rev. B 81, 035102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035102
41.
41. K. Hoffmann, Electron Energy Loss Spectroscopy as an Experimental Probe for the Crystal Structure and Electronic Situation of Solids (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012).
42.
42. J. Ramírez-Malo, E. Márquez, C. Corrales, P. Villares, and R. Jiménez-Garay, “ Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mater. Sci. Eng., B 25, 5359 (1994).
http://dx.doi.org/10.1016/0921-5107(94)90201-1
43.
43. O. Nordman, N. Nordman, and N. Peyghambarian, “ Electron beam induced changes in the refractive index and film thickness of amorphous As[sub x]S[sub 100x] and As[sub x]Se[sub 100x] films,” J. Appl. Phys. 84, 6055 (1998).
http://dx.doi.org/10.1063/1.368915
44.
44. A. Kovalskiy, J. Neilson, A. Miller, F. Miller, M. Vlcek, and H. Jain, “ Comparative study of electron- and photo-induced structural transformations on the surface of As35S65 amorphous thin films,” Thin Solid Films 516, 75117518 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.04.054
45.
45. A. M. Nastas, A. M. Andriesh, V. V. Bivol, A. M. Prisakar, and G. M. Tridukh, “ Effect of electric field on photoinduced changes in the optical properties of chalcogenide glassy semiconductors,” Tech. Phys. Lett. 32, 4547 (2006).
http://dx.doi.org/10.1134/S1063785006010159
46.
46. V. Arkhipov, M. Iovu, M. Iovu, A. Rudenko, and S. Shutov, “ Negative transient currents in amorphous semiconductors,” Int. J. Electron. 51, 735742 (1981).
http://dx.doi.org/10.1080/00207218108901378
47.
47. K. Tanaka, “ Chemical and medium-range orders in As2S3 glass,” Phys. Rev. B 36(18 ), 97469752 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.9746
48.
48. J. M. Lee, G. Pfeiffer, M. A. Paesler, D. E. Sayers, and A. Fontaine, “ Photon intensity-dependent darkening kinetics in optical and structural anisotropy in a-As2S3: A study of X-ray absorption spectroscopy,” J. Non-Cryst. Solids 114, 5254 (1989).
http://dx.doi.org/10.1016/0022-3093(89)90065-3
49.
49. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “ Direct writing of optical gratings using a scanning electron microscope,” Appl. Opt. 17, 2342 (1978).
http://dx.doi.org/10.1364/AO.17.002342
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4789602
Loading
/content/aip/journal/jap/113/4/10.1063/1.4789602
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4789602
2013-01-30
2015-05-27

Abstract

In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of . Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by -thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4789602.html;jsessionid=2bthnh3mclrkm.x-aip-live-03?itemId=/content/aip/journal/jap/113/4/10.1063/1.4789602&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4789602
10.1063/1.4789602
SEARCH_EXPAND_ITEM