Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “ Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express 18, 26754 (2010).
2. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “ Chalcogenide photonics,” Nature Photon. 5, 141148 (2011).
3. M. D. Pelusi, F. Luan, S. J. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “ Chalcogenide glass chip based nonlinear signal processing—OSA Technical Digest (CD),” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), p. IWC3.
4. B. J. Eggleton, “ Chalcogenide photonics: Fabrication, devices and applications Introduction,” Opt. Express 18, 26632 (2010).
5. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “ Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18, 16206 (2010).
6. X. Bendaña, A. Polman, and F. J. García de Abajo, “ Single-photon generation by electron beams,” Nano Lett. 11, 50995103 (2011).
7. S. Juodkazis, T. Kondo, and H. Misawa, “ Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses,” Proc. SPIE 5662, 179184 (2004).
8. G. Chen, H. Jain, M. Vlcek, and A. Ganjoo, “ Photoinduced volume change in arsenic chalcogenides by bandgap light,” Phys. Rev. B 74, 174203 (2006).
9. M. I. Kozak, V. Y. Loya, N. P. Golub, and M. Y. Onis'ko, “ Mechanism of photoinduced nanodimensional expansion/contraction in glassy thin layers of As2S3,” Theor. Exp. Chem. 45, 6973 (2009).
10. H. Fritzsche and H. Firtzsche, “ Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99(3 ), 153 (1996).
11. K. Tanaka, “ Photoinduced deformations in chalcogenide glasses: Scalar and vectorial,” J. Optoelectron. Adv. Mater. 7(5 ), 25712580 (2005).
12. J. Feinleib, J. P. DeNeufville, S. C. Moss, and S. R. Ovshinsky, “ Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254 (1971).
13. K. Tanaka and K. Shimakawa, “ Chalcogenide glasses in Japan: A review on photoinduced phenomena,” Phys. Status Solidi B 246, 17441757 (2009).
14. I. Istvan, “ Photo- and ion-induced changes in amorphous chalcogenide films,” Ph.D. thesis (University of Debrecen, Hungary, 2007).
15. J. De Neufville, S. Moss, and S. Ovshinsky, “ Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13(2 ), 191223 (1974).
16. V. Gopal, “ Energy gap-refractive index interrelation,” Infrared Phys. 22(5 ), 255257 (1982).
17. R. M. Kurtz, W. Lu, J. Piranian, T. Jannson, and A. O. Okorogu, “ The fast photorefractive effect and its application to vibrometry,” J. Hologr. Speckle 5, 149155 (2009).
18. V. K. Tikhomirov and S. R. Elliott, “ The anisotropic photorefractive effect in bulk As2S3 glass induced by polarized subgap laser light,” J. Phys.: Condens. Matter 7(8 ), 1737 (1995).
19. M. Kowalyshen, “ Photoinduced dichroism in amorphous As2Se3 thin film,” Ph.D. thesis (University of Saskatchewan, Canada, 2010).
20. V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “ All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 1124211247 (2006).
21. V. Lyubin, M. Klebanov, M. Veinger, I. Lyubina, and B. Sfez, “ Photoluminescence and photostructural transformations in neodymium-doped glassy chalcogenide films,” Opt. Mater. 28, 11151117 (2006).
22. P. Anderson, “ Model for the electronic structure of amorphous semiconductors,” Phys. Rev. Lett. 34(15 ), 953955 (1975).
23. H. Fritzsche, “ Toward understanding the photoinduced changes in chalcogenide glasses,” Semiconductors 32, 850854 (1998).
24. S. Simdyankin, S. Elliott, Z. Hajnal, T. Niehaus, and T. Frauenheim, “ Simulation of physical properties of the chalcogenide glass As2S3 using a density-functional-based tight-binding method,” Phys. Rev. B 69, 144202 (2004).
25. A. Andriesh, M. Iovu, and S. Shutov, Semiconducting Chalcogenide Glass II—Properties of Chalcogenide Glasses, 1st ed., Semiconductors and Semimetals, Vol. 79 (Elsevier, 2004).
26. J. Singh and K. Tanaka, “ Photo-structural changes in chalcogenide glasses during illumination,” J. Mater. Sci.: Mater. Electron. 18, 423428 (2007).
27. T. Suhara, H. Nishihara, and J. Koyama, “ Electron-beam-induced refractive-index change of amorphous semiconductors,” Jpn. J. Appl. Phys., Part 1 14, 10791080 (1975).
28. N. Nordman and O. Salminen, “ Thickness variations in amorphous As2S3 films induced by electron beam,” Solid State Commun. 100, 241244 (1996).
29. N. Nordman and O. Nordman, “ Refractive index change caused by electron irradiation in amorphous AsS and AsSe thin films coated with different metals,” J. Appl. Phys. 90, 2206 (2001).
30. O. Nordman, N. Nordman, and V. Pashkevich, “ Refractive-index change caused by electrons in amorphous AsS and AsSe thin films doped with different metals by photodiffusion,” J. Opt. Soc. Am. B 18, 1206 (2001).
31. K. Tanaka, “ Electron beam induced reliefs in chalcogenide glasses,” Appl. Phys. Lett. 70, 261 (1997).
32. J. Perrin, J. Cazaux, and P. Soukiassian, “ Optical constants and electronic structure of crystalline and amorphous As2S3 in the 3 to 35 eV range,” Phys. Status Solidi B 62, 343350 (1974).
33. R. F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum, New York, 1996).
34. R. H. Ritchie, “ Plasmon losses by fast electron in thin films,” Phys. Rev. 106, 874881 (1957).
35. P. Nozieres and D. Pines, “ Electron interaction in solids: Chacteristic energy-loss spectrum,” Phys. Rev. 113, 12541267 (1959).
36. M. Stöger-Pollach, “ Optical properties and bandgaps from low loss EELS: Pitfalls and solutions,” Micron 39, 10921110 (2008).
37. R. F. Egerton, “ Electron energy-loss spectroscopy in the TEM,” Rep. Prog. Phys. 72, 016502 (2009).
38. J. Verbeeck and G. Bertoni, “ Deconvolution of core electron energy loss spectra,” Ultramicroscopy 109, 13431352 (2009).
39. F. J. García de Abajo, “ Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209275 (2010).
40. L. Zhang, S. Turner, and J. Verbeeck, “ Model-based determination of dielectric function by STEM low-loss EELS,” Phys. Rev. B 81, 035102 (2010).
41. K. Hoffmann, Electron Energy Loss Spectroscopy as an Experimental Probe for the Crystal Structure and Electronic Situation of Solids (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012).
42. J. Ramírez-Malo, E. Márquez, C. Corrales, P. Villares, and R. Jiménez-Garay, “ Optical characterization of As2S3 and As2Se3 semiconducting glass films of non-uniform thickness from transmission measurements,” Mater. Sci. Eng., B 25, 5359 (1994).
43. O. Nordman, N. Nordman, and N. Peyghambarian, “ Electron beam induced changes in the refractive index and film thickness of amorphous As[sub x]S[sub 100x] and As[sub x]Se[sub 100x] films,” J. Appl. Phys. 84, 6055 (1998).
44. A. Kovalskiy, J. Neilson, A. Miller, F. Miller, M. Vlcek, and H. Jain, “ Comparative study of electron- and photo-induced structural transformations on the surface of As35S65 amorphous thin films,” Thin Solid Films 516, 75117518 (2008).
45. A. M. Nastas, A. M. Andriesh, V. V. Bivol, A. M. Prisakar, and G. M. Tridukh, “ Effect of electric field on photoinduced changes in the optical properties of chalcogenide glassy semiconductors,” Tech. Phys. Lett. 32, 4547 (2006).
46. V. Arkhipov, M. Iovu, M. Iovu, A. Rudenko, and S. Shutov, “ Negative transient currents in amorphous semiconductors,” Int. J. Electron. 51, 735742 (1981).
47. K. Tanaka, “ Chemical and medium-range orders in As2S3 glass,” Phys. Rev. B 36(18 ), 97469752 (1987).
48. J. M. Lee, G. Pfeiffer, M. A. Paesler, D. E. Sayers, and A. Fontaine, “ Photon intensity-dependent darkening kinetics in optical and structural anisotropy in a-As2S3: A study of X-ray absorption spectroscopy,” J. Non-Cryst. Solids 114, 5254 (1989).
49. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “ Direct writing of optical gratings using a scanning electron microscope,” Appl. Opt. 17, 2342 (1978).

Data & Media loading...


Article metrics loading...



In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of . Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by -thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd