1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Oxidation of Al-bearing III-V materials: A review of key progress
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/5/10.1063/1.4769968
1.
1. J. M. Dallesasse, N. Holonyak, Jr., A. R. Sugg, T. A. Richard, and N. El-Zein, “ Hydrolyzation oxidation of AlxGa1xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844 (1990).
http://dx.doi.org/10.1063/1.103759
2.
2. N. Holonyak, Jr. and J. M. Dallesasse, “ Algaas native oxide,” U.S. patent 5,262,360 (16 November 1993).
3.
3. N. Holonyak, Jr. and J. M. Dallesasse, “ Native oxide of an aluminum-bearing group III-V semiconductor,” U.S. patent 5,567,980 (22 October 1996).
4.
4. N. Holonyak, Jr. and J. M. Dallesasse, “ Semiconductor devices with native aluminum oxide regions,” U.S. patent 5,373,522 (13 December 1994).
5.
5. N. Holonyak, Jr. and J. M. Dallesasse, “ Method for making aluminum gallium arsenide semiconductor device with native oxide layer,” U.S. patent 5,696,023 (9 December 1997).
6.
6. J. M. Dallesasse and N. Holonyak, Jr., “ Native-oxide stripe-geometry AlxGa1xAs-GaAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58, 394 (1991).
http://dx.doi.org/10.1063/1.104645
7.
7. S. A. Maranowski, A. R. Sugg, E. I. Chen, and N. Holonyak, Jr., “ Native oxide top- and bottom-confined narrow stripe p-n AlyGa1y As-GaAs-InxGa1xAs quantum well heterostructure laser,” Appl. Phys. Lett. 63(12 ), 1660 (1993).
http://dx.doi.org/10.1063/1.110728
8.
8. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “ Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65(1 ), 97 (1994).
http://dx.doi.org/10.1063/1.113087
9.
9. E. I. Chen, N. Holonyak, Jr., and S. A. Maranowski, “ AlxGa1xAs-GaAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs,” Appl. Phys. Lett. 66(20 ), 2688 (1995).
http://dx.doi.org/10.1063/1.113489
10.
10. T. A. Richard, N. Holonyak, Jr., F. A. Kish, M. R. Keever, and C. Lei, “ Postfabrication native-oxide improvement of the reliability of visible-spectrum AlGaAs-In(AlGa)P p-n heterostructure diodes,” Appl. Phys. Lett. 66(22 ), 2972 (1995).
http://dx.doi.org/10.1063/1.114247
11.
11. G. Walter, N. Holonyak, Jr., M. Feng, and R. Chan, “ Laser operation of a heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 85(20 ), 4768 (2004).
http://dx.doi.org/10.1063/1.1818331
12.
12. J. M. Dallesasse, P. Gavrilovic, N. Holonyak, Jr., R. W. Kaliski, D. W. Nam, and E. J. Vesely, “ Stability of AlAs in AlxGa1xAs-AlAs-GaAs quantum well heterostructures,” Appl. Phys. Lett. 56(24 ), 2436 (1990).
http://dx.doi.org/10.1063/1.102902
13.
13. A. R. Sugg, N. Holonyak, Jr., J. E. Baker, F. A. Kish, and J. M. Dallesasse, “ Native oxide stabilization of AlAs-GaAs heterostructures,” Appl. Phys. Lett. 58(11 ), 1199 (1991).
http://dx.doi.org/10.1063/1.105213
14.
14. N. Holonyak, Jr., W. D. Laidig, M. D. Camras, J. J. Coleman, and P. D. Dapkus, “ IR-red GaAs-AlAs superlattice laser monolithically integrated in a yellow-gap cavity,” Appl. Phys. Lett. 39(1 ), 102 (1981).
http://dx.doi.org/10.1063/1.92536
15.
15. A. W. Laubengayer and R. S. Weisz, “ A hydrothermal study of equilibria in the system alumina-water,” J. Am. Chem. Soc. 65, 247 (1943).
http://dx.doi.org/10.1021/ja01242a031
16.
16. G. Ervin, Jr. and E. F. Osborn, “ The system Al2O3-H2O,” J. Geol. 59, 381 (1951).
http://dx.doi.org/10.1086/625874
17.
17. G. C. Kennedy, “ Phase relations in the system Al2O3-H2O at high temperatures and pressures,” Am. J. Sci. 257, 563 (1959).
http://dx.doi.org/10.2475/ajs.257.8.563
18.
18. W. S. Fyfe and M. A. Hollander, “ Equilibrium dehydration of daispore at low temperatures,” Am. J. Sci 262, 709 (1964).
http://dx.doi.org/10.2475/ajs.262.6.709
19.
19. H. C. Stumpf, A. S. Russell, J. W. Newsome, and C. M. Tucker, “ Thermal transformations of aluminas and alumina hydrates,” Ind. Eng. Chem. 42, 1398 (1950).
http://dx.doi.org/10.1021/ie50487a039
20.
20. F. C. Frary, “ Adventures with alumina,” Ind. Eng. Chem. 38, 129 (1946).
http://dx.doi.org/10.1021/ie50434a011
21.
21. K. Wefers and C. Misra, “ Oxides and hydroxides of aluminum,” Alcoa Technical Paper No. 19, Revised, Alcoa Laboratories, 1987.
22.
22. C. I. H. Ashby, J. P. Sullivan, P. P. Newcomer, N. A. Missert, H. Q. Hou, B. E. Hammons, M. J. Hafich, and A. G. Baca, “ Wet oxidation of AlxGa1xAs: Temporal evolution of composition and microstructure and the implications for metal-insulator-semiconductor applications,” Appl. Phys. Lett. 70, 2443 (1997).
http://dx.doi.org/10.1063/1.118897
23.
23. C. I. Ashby, J. P. Sullivan, K. D. Choquette, K. M. Geib, and H. Q. Hou, “ Wet oxidation of AlGaAs: The role of hydrogen,” J. Appl. Phys. 82, 3134 (1997).
http://dx.doi.org/10.1063/1.366156
24.
24. C. I. Ashby, M. M. Bridges, A. A. Allerman, B. E. Hammons, and H. Q. Hou, “ Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys. Lett. 75, 73 (1999).
http://dx.doi.org/10.1063/1.124280
25.
25. S.-K. Cheong, B. A. Bunker, T. Shibata, D. C. Hall, C. B. DeMelo, Y. Luo, G. L. Snider, G. Kramer, and N. El-Zein, “ Residual arsenic site in oxidized AlxGa1xAs (x = 0.96),” Appl. Phys. Lett. 78, 2458 (2001).
http://dx.doi.org/10.1063/1.1367307
26.
26. P. C. Ku and C. J. Chang-Hasnain, “ Thermal oxidation of AlGaAs: Modeling and process control,” IEEE J. Quantum Electron. 39, 577 (2003).
http://dx.doi.org/10.1109/JQE.2003.809340
27.
27. J. M. Dallesasse, N. Holonyak, Jr., D. C. Hall, N. El-Zein, A. R. Sugg, S. C. Smith, and R. D. Burnham, “ Native-oxide defined coupled-stripe AlxGa1xAs-GaAs quantum-well heterostructure lasers,” Appl. Phys. Lett. 58, 834 (1991).
http://dx.doi.org/10.1063/1.104504
28.
28. F. A. Kish, S. J. Caracci, N. Holonyak, Jr., J. M. Dallesasse, G. E. Höfler, R. D. Burnham, and S. C. Smith, “ Low-threshold disorder-defined native-oxide delineated buried-heterostructure AlxGa1xAs-GaAs quantum well lasers,” Appl. Phys. Lett. 58(16 ), 1765 (1991).
http://dx.doi.org/10.1063/1.105084
29.
29. F. A. Kish, S. J. Caracci, S. A. Maranowski, N. Holonyak, Jr., S. C. Smith, and R. D. Burnham, “ Planar native-oxide AlxGa1xAs-GaAs quantum well heterostructure ring laser diodes,” Appl. Phys. Lett. 60(13 ), 1582 (1992).
http://dx.doi.org/10.1063/1.107258
30.
30. F. A. Kish, S. J. Caracci, N. Holonyak, Jr., J. M. Dallesasse, A. R. Sugg, R. M. Fletcher, C. P. Kuo, T. D. Osentowski, and M. D. Craford, “ Native-oxide stripe-geometry In0.5(AlxGa1x)0.5P-In0.5Ga0.5P heterostructure laser diodes,” Appl. Phys. Lett. 59(3 ), 354 (1991).
http://dx.doi.org/10.1063/1.105593
31.
31. T. A. Richard, F. A. Kish, N. Holonyak, Jr., J. M. Dallesasse, K. C. Hsieh, M. J. Ries, P. Gavrilovic, K. Meehan, and J. E. Williams, “ Native-oxide coupled-stripe AlyGa1yAs-GaAs-InxGa1xAs quantum well heterostructure lasers,” Appl. Phys. Lett. 58(21 ), 2390 (1991).
http://dx.doi.org/10.1063/1.104880
32.
32. M. R. Krames, N. Holonyak, Jr., J. E. Epler, and H. P. Schweizer, “ Buried-oxide ridge-waveguide InAlAs-InP-InGaAsP (λ∼ 1.3 μm) quantum well heterostructure laser diodes,” Appl. Phys. Lett. 64(21 ), 2821 (1994).
http://dx.doi.org/10.1063/1.111436
33.
33. S. J. Caracci, M. R. Krames, N. Holonyak, Jr., M. J. Ludowise, and A. Fischer-Colbrie, “ Long wavelength (λ∼ 1.5 μm) native-oxide-defined InAlAs-InP-InGaAsP quantum well heterostructure laser diodes,” J. Appl. Phys. 75(5 ), 2706 (1994).
http://dx.doi.org/10.1063/1.356200
34.
34. N. El-Zein, N. Holonyak, Jr., F. A. Kish, S. C. Smith, J. M. Dallesasse, and R. D. Burnham, “ Resonance and switching in a native-oxide-defined AlxGa1xAs-GaAs quantum-well heterostructure laser array,” Appl. Phys. Lett. 61(6 ), 705 (1992).
http://dx.doi.org/10.1063/1.107832
35.
35. A. R. Sugg, E. I. Chen, T. A. Richard, N. Holonyak, Jr., and K. C. Hsieh, “ Native oxide-embedded AlyGa1yAs-GaAs-InxGa1xAs quantum well heterostructure lasers,” Appl. Phys. Lett. 62(11 ), 1259 (1993).
http://dx.doi.org/10.1063/1.108700
36.
36. F. A. Kish, S. A. Maranowski, G. E. Höfler, N. Holonyak, Jr., S. J. Caracci, J. M. Dallesasse, and K. C. Hsieh, “ Dependence on doping type (p/n) of the water vapor oxidation of high-gap AlxGa1xAs,” Appl. Phys. Lett. 60, 3165 (1992).
http://dx.doi.org/10.1063/1.106730
37.
37. O. V. Bogdankevich, “ The use of electron-beam pumped semiconductor lasers in projection television,” IEEE J. Quantum Electron. 14(2 ), 133 (1978).
http://dx.doi.org/10.1109/JQE.1978.1069740
38.
38. N. G. Basov, O. V. Bogdankevich, and A. G. Devyatkov, “ Exciting a semiconductor quantum generator with a fast electron beam,” Sov. Phys. Doklady 9, 288 (1964).
39.
39. G. E. Stillman, M. D. Sirkis, J. A. Rossi, M. R. Johnson, and N. Holonyak, Jr., “ Volume excitation of an ultrathin single-mode CdSe laser,” Appl. Phys. Lett. 9(7 ), 268 (1966).
http://dx.doi.org/10.1063/1.1754744
40.
40. M. R. Johnson, N. Holonyak, Jr., M. D. Sirkis, and E. D. Boose, “ Volume excitation of an ultrathin continuous-wave CdSe laser at 6900 Å output,” Appl. Phys. Lett. 10(10 ), 281 (1967).
http://dx.doi.org/10.1063/1.1754811
41.
41. I. Melngilis, “ Longitudinal injection-plasma laser of InSb,” Appl. Phys. Lett. 6(3 ), 59 (1965).
http://dx.doi.org/10.1063/1.1754164
42.
42. D. R. Scifres and R. D. Burnham, “ Distributed feedback diode laser,” U.S. patent 3,983,509 (28 September 1976).
43.
43. D. R. Scifres, R. D. Burnham, and W. Streifer, “ Highly collimated laser beams from electrically pumped SH GaAs/GaAlAs distributed-feedback lasers,” Appl. Phys. Lett. 26(2 ), 48 (1975).
http://dx.doi.org/10.1063/1.88068
44.
44. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “ GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., Part 1 18(12 ), 2329 (1979).
http://dx.doi.org/10.1143/JJAP.18.2329
45.
45. J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “ Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25(17 ), 1123 (1989).
http://dx.doi.org/10.1049/el:19890754
46.
46. R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “ Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2(4 ), 234 (1990).
http://dx.doi.org/10.1109/68.53246
47.
47. C. C. Hansing, H. Ding, D. L. Huffaker, D. G. Deppe, B. G. Streetman, and J. Sarathy, “ Low-threshold continuous-wave surface emitting lasers with etched void confinement,” IEEE Photon. Technol. Lett. 6(3 ), 320 (1994).
http://dx.doi.org/10.1109/68.275477
48.
48. K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “ Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett. 30(24 ), 2043 (1994).
http://dx.doi.org/10.1049/el:19941421
49.
49. Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “ Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure,” Electron. Lett. 31(7 ), 560 (1995).
http://dx.doi.org/10.1049/el:19950391
50.
50. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “ Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31(11 ), 886 (1995).
http://dx.doi.org/10.1049/el:19950610
51.
51. N. M. Margalit, D. I. Babic, K. Streubel, R. P. Marin, D. E. Mars, J. E. Bowers, and E. L. Hu, “ Laterally oxidized long wavelength cw vertical-cavity lasers,” Appl. Phys. Lett. 69(4 ), 471 (1996).
http://dx.doi.org/10.1063/1.118143
52.
52. F. Tan, C. H. Wu, M. Feng, and N. Holonyak, Jr., “ Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
http://dx.doi.org/10.1063/1.3589363
53.
53. Y. C. Chang and L. A. Coldren, “ Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3 ), 704 (2009).
http://dx.doi.org/10.1109/JSTQE.2008.2010955
54.
54. P. Westbergh, J. S. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “ 32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45(7 ), 366 (2009).
http://dx.doi.org/10.1049/el.2009.0201
55.
55. H. Hatakeyama, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, and M. Tsuji, “ Highly reliable high-speed 1.1-mm-range VCSELs with InGaAs/GaAsP-MQWs,” IEEE J. Quantum Electron. 46(6 ), 890 (2010).
http://dx.doi.org/10.1109/JQE.2010.2040583
56.
56. X. Li, Y. Cao, D. C. Hall, P. Fay, X. Zhang, and R. D. Dupuis, “ Electrical characterization of native-oxide InAlP/GaAs metal-oxide-semiconductor heterostructures using impedance spectroscopy,” J. Appl. Phys. 95(8 ), 4209 (2004).
http://dx.doi.org/10.1063/1.1669078
57.
57. X. Li, Y. Cao, D. C. Hall, P. Fay, B. Han, A. Wibowo, and N. Pan, “ GaAs MOSFET using InAlP native oxide as gate dielectric,” IEEE Electron Device Lett. 25(12 ), 772 (2004).
http://dx.doi.org/10.1109/LED.2004.838555
58.
58. O. Blum, K. M. Geib, M. J. Hafich, J. F. Klem, and C. I. H. Ashby, “ Wet thermal oxidation of AlAsSb lattice matched to InP for optoelectronic applications,” Appl. Phys. Lett. 68(22 ), 3129 (1996).
http://dx.doi.org/10.1063/1.115800
59.
59. A. L. Brown and M. G. Norton, “ Oxidation kinetics of AlN powder,” J. Mater. Sci. Lett. 17, 1519 (1998).
http://dx.doi.org/10.1023/A:1006512904173
60.
60. P. A. Grudowski, R. V. Chelakara, and R. D. Dupuis, “ An InAlAs/InGaAs metal-oxide-semiconductor field effect transistor using the native oxide of InAlAs as a gate insulation layer,” Appl. Phys. Lett. 69(3 ), 388 (1996).
http://dx.doi.org/10.1063/1.118070
61.
61. J. Zhang, T. H. Kosel, D. C. Hall, and P. Fay, “ Fabrication and performance of 0.25-μm gate length depletion-mode GaAs-channel MOSFETs with self-aligned InAlP native oxide gate dielectric,” IEEE Electron Device Lett. 29(2 ), 143 (2008).
http://dx.doi.org/10.1109/LED.2007.914107
62.
62. Y. Cao, J. Zhang, X. Li, T. H. Kosel, P. Fey, D. C. Hall, X. B. Zhang, R. D. Dupuis, J. B. Jasinski, and Z. Liliental-Weber, “ Electrical properties of InAlP native oxides for metal-oxide-semiconductor device applications,” Appl. Phys. Lett. 86, 062105 (2005).
http://dx.doi.org/10.1063/1.1861981
63.
63. X. Xing and P. J. Fey, “ Enhancement-mode pseudomorphic In0.22Ga0.78As-channel MOSFETs with ultrathin InAlP native oxide gate dielectric and a cutoff frequency of 60 GHz,” IEEE Electron Device Lett. 31(11 ), 1214 (2010).
http://dx.doi.org/10.1109/LED.2010.2068034
64.
64. M. Feng, N. Hoonyak, Jr., G. Walter, and R. Chan, “ Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Appl. Phys. Lett. 87, 131103 (2005).
http://dx.doi.org/10.1063/1.2058213
65.
65. N. Pan, C. Youtsey, D. S. McCallum, V. C. Elarde, and J. M. Dallesasse, “ High efficiency group III-V compound semiconductor solar cell with oxidized window layer,” U.S. patent application US 2010/0186822 A1 (29 July 2010).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4769968
Loading
/content/aip/journal/jap/113/5/10.1063/1.4769968
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/5/10.1063/1.4769968
2013-02-01
2014-10-22

Abstract

Since the discovery of III-V oxidation by Dallesasse and Holonyak in 1989, significant progress has been made both technically and commercially in the use of oxides in compound semiconductor devices. Devices ranging from lasers to transistors have been fabricated that capitalize on the process-induced modification of refractive index and conductivity, allowing control of the two carriers of information in opto-electronic systems—the photon and the electron. Of particular note has been the use of oxidation for the fabrication of high-speed vertical-cavity surface-emitting lasers, which have extensive use in optical data links found in enterprise networks, data centers, and supercomputing applications. The discovery of III-V oxidation and key technical milestones in the fabrication of photonic and electronic devices that use oxidation are reviewed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/5/1.4769968.html;jsessionid=27uh441678no3.x-aip-live-06?itemId=/content/aip/journal/jap/113/5/10.1063/1.4769968&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oxidation of Al-bearing III-V materials: A review of key progress
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4769968
10.1063/1.4769968
SEARCH_EXPAND_ITEM