1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Optical susceptibilities in singly charged ZnO colloidal quantum dots embedded in different dielectric matrices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/5/10.1063/1.4789363
1.
1. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
2.
2. D. E. Fogg, L. H. Radzilowski, R. Blanski, R. R. Schrock, and E. L. Thomas, Macromolecules 30, 417 (1997);
http://dx.doi.org/10.1021/ma961103y
2. D. E. Fogg, L. H. Radzilowski, B. O. Dabbousi, R. R. Schrock, E. L. Thomas, and M. G. Bawendi, Macromolecules 30, 8433 (1997).
http://dx.doi.org/10.1021/ma970626i
3.
3. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
http://dx.doi.org/10.1021/ja00072a025
4.
4. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater. 12, 1102 (2000).
http://dx.doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J
5.
5. S. T. Selvan, C. Bullen, M. Ashok Kumar, and P. Mulvaney, Adv. Mater. 13, 985 (2001).
http://dx.doi.org/10.1002/1521-4095(200107)13:12/13<985::AID-ADMA985>3.0.CO;2-W
6.
6. N. Bouropoulos, I. Tsiaoussis, P. Poulopoulos, P. Roditis, and S. Baskoutas, Mater. Lett. 62, 3533 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.03.044
7.
7. D. I. Son, C. H. You, W. T. Kim, and T. W. Kim, Nanotechnology 20, 365206 (2009);
http://dx.doi.org/10.1088/0957-4484/20/36/365206
7. D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, Appl. Phys. Lett. 97, 013304 (2010).
http://dx.doi.org/10.1063/1.3454774
8.
8. Y. Tu, L. Zhou, Y. Z. Jin, C. Gao, Z. Z. Ye, Y. F. Yang, and Q. L. Wang, J. Mater. Chem. 20, 1594 (2010).
http://dx.doi.org/10.1039/b914156a
9.
9. M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi, and M. Rajarajan, J. Sol-Gel Sci. Technol. 61, 14 (2012).
http://dx.doi.org/10.1007/s10971-011-2584-7
10.
10. Y. C. Liu, H. Y. Xu, R. Mu, D. O. Henderson, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, and C. W. White, Appl. Phys. Lett. 83, 1210 (2003).
http://dx.doi.org/10.1063/1.1591248
11.
11. K.-K. Kim, N. Koguchi, Y.-W. Ok, T.-Y. Seong, and S.-J. Park, Appl. Phys. Lett. 84, 3810 (2004).
http://dx.doi.org/10.1063/1.1741030
12.
12. Y.-Q. Li, Y. Yang, C. Q. Sun, and S.-Y. Fu, J. Phys. Chem. C 112, 17397 (2008).
http://dx.doi.org/10.1021/jp8063068
13.
13. D. Bera, L. Qian, and P. H. Holloway, J. Phys. D: Appl. Phys. 41, 182002 (2008).
http://dx.doi.org/10.1088/0022-3727/41/18/182002
14.
14. N. Hagura, T. Takeuchi, S. Takayama, F. Iskandar, and K. Okuyama, J. Lumin. 131, 138 (2011).
http://dx.doi.org/10.1016/j.jlumin.2010.09.039
15.
15. S. Baskoutas and G. Bester, J. Phys. Chem. C 114, 9301 (2010).
http://dx.doi.org/10.1021/jp101921g
16.
16. L. Dallali, S. Jaziri, J. el Haskouri, P. Amorós, and J. Martínez-Pastor, Solid State Commun. 151, 822 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.03.024
17.
17. D. Maikhuri, S. P. Purohit, and K. C. Mathur, AIP Adv. 2, 012160 (2012).
http://dx.doi.org/10.1063/1.3693405
18.
18. S. Sauvage, P. Boucaud, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaitre, J.-M. Gerard, and V. Thierry-Mieg, Phys. Rev. B 59, 9830 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.9830
19.
19. T. Brunhes, P. Boucaud, S. Sauvage, A. Lemaitre, J.-M. Gerard, F. Glotin, R. Prazeres, and J.-M. Ortega, Phys. Rev. B 61, 5562 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5562
20.
20. S. G. Kosionis, A. F. Terzis, C. Simserides, and E. Paspalakis, J. Appl. Phys. 108, 034316 (2010).
http://dx.doi.org/10.1063/1.3457855
21.
21. M. Rieth, W. Schommers, and S. Baskoutas, Int. J. Mod. Phys. B 16, 4081 (2002).
http://dx.doi.org/10.1142/S0217979202014802
22.
22. I. Karabulut and S. Baskoutas, J. Appl. Phys. 103, 073512 (2008).
http://dx.doi.org/10.1063/1.2904860
23.
23. S. Baskoutas and A. F. Terzis, J. Appl. Phys. 98, 044309 (2005).
http://dx.doi.org/10.1063/1.2011784
24.
24. S. Baskoutas and A. F. Terzis, J. Appl. Phys. 99, 013708 (2006).
http://dx.doi.org/10.1063/1.2158502
25.
25. S. Baskoutas, E. Paspalakis, and A. F. Terzis, Phys. Rev. B 74, 153306 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.153306
26.
26. M. Lannoo, C. Delerue, and G. Allan, Phys. Rev. Lett. 74, 3415 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3415
27.
27. Anchala, S. P. Purohit, and K. C. Mathur, Appl. Phys. Lett. 98, 043106 (2011).
http://dx.doi.org/10.1063/1.3548861
28.
28. P. Poulopoulos, S. Baskoutas, S. D. Pappas, C. S. Garoufalis, S. A. Droulias, A. Zamani, and V. Kapaklis, J. Phys. Chem. C 115, 14839 (2011).
http://dx.doi.org/10.1021/jp203145n
29.
29. Z. Zeng, C. S. Garoufalis, S. Baskoutas, and A. F. Terzis, J. Appl. Phys. 112, 064326 (2012).
http://dx.doi.org/10.1063/1.4754824
30.
30. Z. Zeng, C. S. Garoufalis, and S. Baskoutas, J. Phys. D: Appl. Phys. 45, 235102 (2012).
http://dx.doi.org/10.1088/0022-3727/45/23/235102
31.
31. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, San Diego, 2008), Chap. 6.
32.
32. F. Yu, L. Zhang, and K. Guo, Superlattice Microstruct. 50, 128 (2011).
http://dx.doi.org/10.1016/j.spmi.2011.05.009
33.
33. S.-S. Li and J.-B. Xia, J. Appl. Phys. 101, 093716 (2007).
http://dx.doi.org/10.1063/1.2734097
34.
34. A. Issac, “ Photoluminescence intermittency of semiconductor quantum dots in dielectric environments,” doctoral thesis (von der Fakultät für Naturwissenschaften der Technischen Universität, Germany, 2006), p. 66.
35.
35. J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
36.
36. S. Mahendia, A. K. Tomar, R. P. Chahal, P. Goyal, and S. Kumar, J. Phys. D: Appl. Phys. 44, 205105 (2011).
http://dx.doi.org/10.1088/0022-3727/44/20/205105
37.
37. J. Robertson, Eur. Phys. J.-Appl. Phys. 28, 265 (2004).
http://dx.doi.org/10.1051/epjap:2004206
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4789363
Loading
/content/aip/journal/jap/113/5/10.1063/1.4789363
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/5/10.1063/1.4789363
2013-02-01
2014-10-23

Abstract

Within the two-level system approximation, analytical expressions for the linear, third-order nonlinear and intensity-dependent susceptibilities in quantum dots (QDs) embedded in a dielectric matrix are developed by using density matrix equations, considering the local field effect due to the presence of dielectric mismatch. Based on the derived expressions, we perform a comparative study of the optical susceptibilities in singly charged zinc oxide QDs embedded in various dielectric matrices. Three commonly adopted matrices are considered. The electronic structure of the system is numerically calculated. In general, our results indicate that the optical susceptibilities are highly affected by the capped matrices. For example, QDs embedded in the matrix with the largest dielectric constant but the smallest energy band gap exhibit the largest linear and nonlinear optical susceptibilities, while that dispersed in a matrix with the largest energy band gap show the highest threshold energy. It is also found that the third-order nonlinear susceptibility exhibits a stronger dependence on the nature of the capped matrix as compared to its linear counterpart. Finally, we find that the total susceptibility in charged QD immersed in a matrix with a higher dielectric constant is more sensitive to the applied radiation intensity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/5/1.4789363.html;jsessionid=b25l4m8js6atj.x-aip-live-02?itemId=/content/aip/journal/jap/113/5/10.1063/1.4789363&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical susceptibilities in singly charged ZnO colloidal quantum dots embedded in different dielectric matrices
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4789363
10.1063/1.4789363
SEARCH_EXPAND_ITEM