1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/5/10.1063/1.4790710
1.
1. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, J. Appl. Phys. 106, 023521 (2009).
http://dx.doi.org/10.1063/1.3176984
2.
2. R. Colby, Z. Liang, I. H. Wildeson, D. A. Ewoldt, T. D. Sands, R. E. García, and E. A. Stach, Nano Lett. 10, 1568 (2010).
http://dx.doi.org/10.1021/nl9037455
3.
3. A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. A. Suleiman, S. Merzsch, J. Wei, S Li, H. H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, Phys. Status Solidi C 8, 2296 (2011).
http://dx.doi.org/10.1002/pssc.201000989
4.
4. S. Li and A. Waag, J. Appl. Phys. 111, 071101 (2012).
http://dx.doi.org/10.1063/1.3694674
5.
5. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
http://dx.doi.org/10.1063/1.3443734
6.
6. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H. H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305201
7.
7. R. Koester, J. S. Hwang, D. Salomon, X. Chen, C. Bougerol, J. P. Barnes, D. S. Dang, L. Rigutti, A. de Luna Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
http://dx.doi.org/10.1021/nl202686n
8.
8. C. H. Liao, W. M. Chang, H. S. Chen, C. Y. Chen, Y. F. Yao, H. T. Chen, C. Y. Su, S. Y. Ting, Y. W. Kiang, and C. C. Yang, Opt. Express 20, 15859 (2012).
http://dx.doi.org/10.1364/OE.20.015859
9.
9. T. Yeh, Y. Lin, L. S. Stewart, P. D. Dapkus, R. Sarkissian, J. D. O'Brien, B. Ahn, and S. R. Nutt, Nano Lett. 12, 3257 (2012).
http://dx.doi.org/10.1021/nl301307a
10.
10. J. R. Chang, S. P. Chang, Y. J. Li, Y. J. Cheng, K. P. Sou, J. K. Huang, H. C. Kuo, and C. Y. Chang, Appl. Phys. Lett. 100, 261103 (2012).
http://dx.doi.org/10.1063/1.4731629
11.
11. F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett. 4, 1975 (2004).
http://dx.doi.org/10.1021/nl0487774
12.
12. S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, and S. Gradecak, Nano Lett. 9, 3940 (2009).
http://dx.doi.org/10.1021/nl9025743
13.
13. H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, Nanotechnology 17, 1454 (2006).
http://dx.doi.org/10.1088/0957-4484/17/5/048
14.
14. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, Opt. Express 16, 10549 (2008).
http://dx.doi.org/10.1364/OE.16.010549
15.
15. Q. Li and G. T. Wang, Appl. Phys. Lett. 97, 181107 (2010).
http://dx.doi.org/10.1063/1.3513345
16.
16. S. Albert, A. Bengoechea-Encabo, P. Lefebvre, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, and A. Trampert, Appl. Phys. Lett. 99, 131108 (2011).
http://dx.doi.org/10.1063/1.3644986
17.
17. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, IEEE J. Sel. Top. Quantum Electron. 15, 1242 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2016433
18.
18. T. Y. Tang, W. Y. Shiao, C. H. Lin, K. C. Shen, J. J. Huang, S. Y. Ting, T. C. Liu, C. C. Yang, C. L. Yao, J. H. Yeh, T. C. Hsu, W. C. Chen, H. C. Hsu, and L. C. Chen, J. Appl. Phys. 105, 023501 (2009).
http://dx.doi.org/10.1063/1.3065527
19.
19. T. Y. Tang, C. H. Lin, Y. S. Chen, W. Y. Shiao, W. M. Chang, C. H. Liao, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, IEEE Trans. Electron. Dev. 57, 71 (2010).
http://dx.doi.org/10.1109/TED.2009.2034795
20.
20. A. D. L. Bugallo, L. Rigutti, G. Jacopin, F. H. Julien, C. Durand, X. J. Chen, D. Salomon, J. Eymery, and M. Tchernycheva, Appl. Phys. Lett. 98, 233107 (2011).
http://dx.doi.org/10.1063/1.3596446
21.
21. G. Jacopin, A. D. L. Bugallo, P. Lavenus, L. Rigutti, F. H. Jullien, L. F. Zagonel, M. Kociak, C. Durand, D. Salomon, X. J. Chen, J. Eymery, and M. Tchernycheva, Appl. Phys. Express 5, 014101 (2012).
http://dx.doi.org/10.1143/APEX.5.014101
22.
22. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, Nano Lett. 10, 3355 (2010).
http://dx.doi.org/10.1021/nl101027x
23.
23. W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, Appl. Phys. Lett. 98, 193102 (2011).
http://dx.doi.org/10.1063/1.3588201
24.
24. H. Lin, Y. Lu, H. Chen, H. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).
http://dx.doi.org/10.1063/1.3478515
25.
25. Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park, and G. C. Yi, Adv. Mater. 23, 3284 (2011).
http://dx.doi.org/10.1002/adma.201100806
26.
26. S. Li, X. Wang, S. Fündling, M. Erenburg, J. Ledig, J. Wei, H. H. Wehmann, A. Waag, W. Bergbauer, M. Mandl, M. Strassburg, A. Trampert, U. Jahn, H. Riechert, H. Jönen, and A. Hangleiter, Appl. Phys. Lett. 101, 032103 (2012).
http://dx.doi.org/10.1063/1.4737395
27.
27. R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang and J. Eymery, Nanotechnology 21, 015602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/1/015602
28.
28. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, Appl. Phys. Lett. 97, 151909 (2010).
http://dx.doi.org/10.1063/1.3497078
29.
29. W. Bergbauer, M. Strassburg, C. Kolper, N. Linder, C. Roder, J. Lahnemann, A. Trampert, S. Fundling, S. F. Li, H.-H. Wehmann, and A. Waag, J. Cryst. Growth 315, 164 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.07.067
30.
30. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H. H. Wehmann, and A. Waag, Cryst. Growth Des. 11, 1573 (2011).
http://dx.doi.org/10.1021/cg101537m
31.
31. X. Wang, S. Li, S. Fündling, J. Wei, M. Erenburg, H. Wehmann, and A. Waag, Cryst. Growth Des. 12, 2552 (2012).
http://dx.doi.org/10.1021/cg3001637
32.
32. K. Choi, M. Arita, and Y. Arakawa, J. Cryst. Growth 357, 58 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.07.025
33.
33. S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
http://dx.doi.org/10.1021/nl060553t
34.
34. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, Appl. Phys. Lett. 90, 123117 (2007).
http://dx.doi.org/10.1063/1.2715119
35.
35. J. Ristić, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.05.057
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4790710
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Plan-view (a) and 30°-tilted (b) SEM images, respectively, of the 250/700 hole pattern.

Image of FIG. 2.

Click to view

FIG. 2.

(a)-(f): Plan-view SEM images of samples I–VI, respectively. (g) and (h): 30°-tilted SEM images of samples I and IV, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Cross-sectional HAADF image of a QW NR of sample I. The three QWs near the sidewall on the right-hand side are indicated by short arrows. The greenish long-dashed lines indicate the boundary of the GaN NR. A quasi-periodic bright line pattern in the image portion of the GaN NR can be seen to show the pulsed growth process. The two horizontal continuous (blue) lines are drawn along the line pattern to indicate the thickness of a pulsed-growth period (∼27 nm). Between the vertical (greenish) long-dashed line on the right and the vertical (pink) short-dashed line, the image line pattern becomes tilted, as indicated by the three slant continuous (red) lines.

Image of FIG. 4.

Click to view

FIG. 4.

(a) and (b): Plan-view SEM images with two different scales of the QW NR structure of sample I. (c) and (d): 30°-tilted SEM images with two different scales of the QW NR structure of sample I. (e) and (f): Plan-view SEM images of the QW NRs of samples II and III, respectively. (g) and (h): Plan-view and 30°-tilted SEM images, respectively, of the QW NRs of sample IV.

Image of FIG. 5.

Click to view

FIG. 5.

(a) and (b): Plan-view and 30°-tilted SEM images of the QW NRs of sample V, respectively. (c) and (d): Plan-view and 30°-tilted SEM images of the QW NRs of sample VI, respectively.

Image of FIG. 6.

Click to view

FIG. 6.

TEM image of a QW NR. (b)–(d): Magnified TEM images around the top, the sidewall near the top, and the sidewall near the bottom (not shown in part (a)), respectively. (e): TEM image of the slant facet (the (1-101) plane). The QWs are indicated by arrows.

Image of FIG. 7.

Click to view

FIG. 7.

(a)-(c): Cross-sectional TEM images of a QW NR, which fell during TEM specimen preparation.

Image of FIG. 8.

Click to view

FIG. 8.

(a) and (b): Plan-view CL mapping images with the panchromatic spectrum and the emission wavelength at 444 nm, respectively, of sample I when the electron acceleration voltage is 5 kV. (c) and (d): Similar CL images to parts (a) and (b), respectively, except that the electron acceleration voltage is 15 kV.

Image of FIG. 9.

Click to view

FIG. 9.

(a)-(c): Cross-sectional SEM image at 5 kV in electron acceleration voltage, and co-located panchromatic CL mapping images at 5 and 15 kV in electron acceleration voltages, respectively, of sample I. (d)-(f): Cross-sectional SEM image at 5 kV in electron acceleration voltage, and co-located panchromatic CL mapping images at 5 and 15 kV in electron acceleration voltages, respectively, of sample IV.

Image of FIG. 10.

Click to view

FIG. 10.

Line-scan intensity profiles (from top to bottom) along the double-headed arrows in Figs. 8(a) , 8(c) , 9(b) , and 9(c) for sample I. The letters “P” and “C” refer to the plan-view and cross-sectional observations, respectively.

Image of FIG. 11.

Click to view

FIG. 11.

CL spectra of sample I measured at different locations and different view directions, including that from the large-scale plan-view (PV) measurement, that at the center on the top face of an NR (PV-c), that at the rim on the top face of the NR (PV-r), that from the large-scale cross-sectional (CS) measurement, that at a point near the top of the sidewall of an NR (CS-t), near the middle height of the sidewall of the NR (CS-m), and near the bottom of the sidewall of the NR (CS-b). For comparison, the plan-view CL spectrum of the bare GaN NR array is also plotted as curve PV-GaN.

Image of FIG. 12.

Click to view

FIG. 12.

(a): Schematic drawing for a model of the self-catalytic VLS growth. (b): 30°-tilted SEM image taken from a sample when the growth stops at the end of the first half-cycle of Ga source supply in pulsed growth.

Image of FIG. 13.

Click to view

FIG. 13.

(a): Schematic drawing of atom migration scenarios. The atom supply from the top is depicted by the curved thin arrows with the supply rate (per unit area) being denoted by γ. The atom migration routes in the gap volume are depicted by the thicker arrows. The total atom escape rate from the gap volume is defined as η. The gap volume is defined as the planar area surrounded by the neighboring three NRs, i.e., the green areas shown in parts (b) and (c) for the side-by-side and edge-to-edge patterns, respectively, multiplied by the NR height h.

Tables

Generic image for table

Click to view

Table I.

Sample parameters and the cross-sectional sizes of various samples.

Generic image for table

Click to view

Table II.

CL spectral peak wavelengths of various cases in different samples.

Loading

Article metrics loading...

/content/aip/journal/jap/113/5/10.1063/1.4790710
2013-02-07
2014-04-16

Abstract

The cross-sectional sizes of the regularly patterned GaN nanorods (NRs) and InGaN/GaN quantum-well (QW) NRs of different heights and different hexagon orientations, which are grown on the patterned templates of different hole diameters, pitches, and crystal orientations, are compared. It is found that the cross-sectional size of the GaN NR, which is formed with the pulsed growth mode, is mainly controlled by the patterned hole diameter, and the thickness of the sidewall QW structure is mainly determined by the NR height. The cross-sectional size variation of GaN NR is interpreted by the quasi-three-dimensional nature of atom supply amount for precipitating a two-dimensional disk-shaped NR segment. The variation of the sidewall QW structure is explained by the condition of constituent atom supply in the gap volume between the neighboring NRs. Also, we compare the cathodoluminescence emission wavelengths among those samples of different growth conditions. Generally speaking, the QW NR with a smaller height, a larger cross-sectional size, or a larger pitch has a longer emission wavelength.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/5/1.4790710.html;jsessionid=4sjn6fa6pkduu.x-aip-live-02?itemId=/content/aip/journal/jap/113/5/10.1063/1.4790710&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4790710
10.1063/1.4790710
SEARCH_EXPAND_ITEM