1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/5/10.1063/1.4790710
1.
1. Y. S. Chen, W. Y. Shiao, T. Y. Tang, W. M. Chang, C. H. Liao, C. H. Lin, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, J. Appl. Phys. 106, 023521 (2009).
http://dx.doi.org/10.1063/1.3176984
2.
2. R. Colby, Z. Liang, I. H. Wildeson, D. A. Ewoldt, T. D. Sands, R. E. García, and E. A. Stach, Nano Lett. 10, 1568 (2010).
http://dx.doi.org/10.1021/nl9037455
3.
3. A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. A. Suleiman, S. Merzsch, J. Wei, S Li, H. H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, Phys. Status Solidi C 8, 2296 (2011).
http://dx.doi.org/10.1002/pssc.201000989
4.
4. S. Li and A. Waag, J. Appl. Phys. 111, 071101 (2012).
http://dx.doi.org/10.1063/1.3694674
5.
5. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
http://dx.doi.org/10.1063/1.3443734
6.
6. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H. H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305201
7.
7. R. Koester, J. S. Hwang, D. Salomon, X. Chen, C. Bougerol, J. P. Barnes, D. S. Dang, L. Rigutti, A. de Luna Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
http://dx.doi.org/10.1021/nl202686n
8.
8. C. H. Liao, W. M. Chang, H. S. Chen, C. Y. Chen, Y. F. Yao, H. T. Chen, C. Y. Su, S. Y. Ting, Y. W. Kiang, and C. C. Yang, Opt. Express 20, 15859 (2012).
http://dx.doi.org/10.1364/OE.20.015859
9.
9. T. Yeh, Y. Lin, L. S. Stewart, P. D. Dapkus, R. Sarkissian, J. D. O'Brien, B. Ahn, and S. R. Nutt, Nano Lett. 12, 3257 (2012).
http://dx.doi.org/10.1021/nl301307a
10.
10. J. R. Chang, S. P. Chang, Y. J. Li, Y. J. Cheng, K. P. Sou, J. K. Huang, H. C. Kuo, and C. Y. Chang, Appl. Phys. Lett. 100, 261103 (2012).
http://dx.doi.org/10.1063/1.4731629
11.
11. F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelet, and C. M. Lieber, Nano Lett. 4, 1975 (2004).
http://dx.doi.org/10.1021/nl0487774
12.
12. S. K. Lim, M. Brewster, F. Qian, Y. Li, C. M. Lieber, and S. Gradecak, Nano Lett. 9, 3940 (2009).
http://dx.doi.org/10.1021/nl9025743
13.
13. H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, Nanotechnology 17, 1454 (2006).
http://dx.doi.org/10.1088/0957-4484/17/5/048
14.
14. C. Y. Wang, L. Y. Chen, C. P. Chen, Y. W. Cheng, M. Y. Ke, M. Y. Hsieh, H. M. Wu, L. H. Peng, and J. J. Huang, Opt. Express 16, 10549 (2008).
http://dx.doi.org/10.1364/OE.16.010549
15.
15. Q. Li and G. T. Wang, Appl. Phys. Lett. 97, 181107 (2010).
http://dx.doi.org/10.1063/1.3513345
16.
16. S. Albert, A. Bengoechea-Encabo, P. Lefebvre, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, and A. Trampert, Appl. Phys. Lett. 99, 131108 (2011).
http://dx.doi.org/10.1063/1.3644986
17.
17. M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, IEEE J. Sel. Top. Quantum Electron. 15, 1242 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2016433
18.
18. T. Y. Tang, W. Y. Shiao, C. H. Lin, K. C. Shen, J. J. Huang, S. Y. Ting, T. C. Liu, C. C. Yang, C. L. Yao, J. H. Yeh, T. C. Hsu, W. C. Chen, H. C. Hsu, and L. C. Chen, J. Appl. Phys. 105, 023501 (2009).
http://dx.doi.org/10.1063/1.3065527
19.
19. T. Y. Tang, C. H. Lin, Y. S. Chen, W. Y. Shiao, W. M. Chang, C. H. Liao, K. C. Shen, C. C. Yang, M. C. Hsu, J. H. Yeh, and T. C. Hsu, IEEE Trans. Electron. Dev. 57, 71 (2010).
http://dx.doi.org/10.1109/TED.2009.2034795
20.
20. A. D. L. Bugallo, L. Rigutti, G. Jacopin, F. H. Julien, C. Durand, X. J. Chen, D. Salomon, J. Eymery, and M. Tchernycheva, Appl. Phys. Lett. 98, 233107 (2011).
http://dx.doi.org/10.1063/1.3596446
21.
21. G. Jacopin, A. D. L. Bugallo, P. Lavenus, L. Rigutti, F. H. Jullien, L. F. Zagonel, M. Kociak, C. Durand, D. Salomon, X. J. Chen, J. Eymery, and M. Tchernycheva, Appl. Phys. Express 5, 014101 (2012).
http://dx.doi.org/10.1143/APEX.5.014101
22.
22. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, Nano Lett. 10, 3355 (2010).
http://dx.doi.org/10.1021/nl101027x
23.
23. W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, Appl. Phys. Lett. 98, 193102 (2011).
http://dx.doi.org/10.1063/1.3588201
24.
24. H. Lin, Y. Lu, H. Chen, H. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).
http://dx.doi.org/10.1063/1.3478515
25.
25. Y. J. Hong, C. H. Lee, A. Yoon, M. Kim, H. K. Seong, H. J. Chung, C. Sone, Y. J. Park, and G. C. Yi, Adv. Mater. 23, 3284 (2011).
http://dx.doi.org/10.1002/adma.201100806
26.
26. S. Li, X. Wang, S. Fündling, M. Erenburg, J. Ledig, J. Wei, H. H. Wehmann, A. Waag, W. Bergbauer, M. Mandl, M. Strassburg, A. Trampert, U. Jahn, H. Riechert, H. Jönen, and A. Hangleiter, Appl. Phys. Lett. 101, 032103 (2012).
http://dx.doi.org/10.1063/1.4737395
27.
27. R. Koester, J. S. Hwang, C. Durand, D. Le Si Dang and J. Eymery, Nanotechnology 21, 015602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/1/015602
28.
28. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, Appl. Phys. Lett. 97, 151909 (2010).
http://dx.doi.org/10.1063/1.3497078
29.
29. W. Bergbauer, M. Strassburg, C. Kolper, N. Linder, C. Roder, J. Lahnemann, A. Trampert, S. Fundling, S. F. Li, H.-H. Wehmann, and A. Waag, J. Cryst. Growth 315, 164 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.07.067
30.
30. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H. H. Wehmann, and A. Waag, Cryst. Growth Des. 11, 1573 (2011).
http://dx.doi.org/10.1021/cg101537m
31.
31. X. Wang, S. Li, S. Fündling, J. Wei, M. Erenburg, H. Wehmann, and A. Waag, Cryst. Growth Des. 12, 2552 (2012).
http://dx.doi.org/10.1021/cg3001637
32.
32. K. Choi, M. Arita, and Y. Arakawa, J. Cryst. Growth 357, 58 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.07.025
33.
33. S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
http://dx.doi.org/10.1021/nl060553t
34.
34. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, Appl. Phys. Lett. 90, 123117 (2007).
http://dx.doi.org/10.1063/1.2715119
35.
35. J. Ristić, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.05.057
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4790710
Loading
/content/aip/journal/jap/113/5/10.1063/1.4790710
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/5/10.1063/1.4790710
2013-02-07
2014-10-22

Abstract

The cross-sectional sizes of the regularly patterned GaN nanorods (NRs) and InGaN/GaN quantum-well (QW) NRs of different heights and different hexagon orientations, which are grown on the patterned templates of different hole diameters, pitches, and crystal orientations, are compared. It is found that the cross-sectional size of the GaN NR, which is formed with the pulsed growth mode, is mainly controlled by the patterned hole diameter, and the thickness of the sidewall QW structure is mainly determined by the NR height. The cross-sectional size variation of GaN NR is interpreted by the quasi-three-dimensional nature of atom supply amount for precipitating a two-dimensional disk-shaped NR segment. The variation of the sidewall QW structure is explained by the condition of constituent atom supply in the gap volume between the neighboring NRs. Also, we compare the cathodoluminescence emission wavelengths among those samples of different growth conditions. Generally speaking, the QW NR with a smaller height, a larger cross-sectional size, or a larger pitch has a longer emission wavelength.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/5/1.4790710.html;jsessionid=29lm4r3a3i27f.x-aip-live-06?itemId=/content/aip/journal/jap/113/5/10.1063/1.4790710&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cross-sectional sizes and emission wavelengths of regularly patterned GaN and core-shell InGaN/GaN quantum-well nanorod arrays
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4790710
10.1063/1.4790710
SEARCH_EXPAND_ITEM