1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/5/10.1063/1.4790798
1.
1. R. A. Ganeev, “ Nonlinear refraction and nonlinear absorption of various media,” J. Opt. A, Pure Appl. Opt. 7, 717 (2005).
http://dx.doi.org/10.1088/1464-4258/7/12/004
2.
2. N. K. M. N. Srinivas, S. V. Rao, and D. N. Rao, “ Saturable and reverse saturable absorption of rhodamine B in methanol and water,” J. Opt. Soc. Am. B 20, 2470 (2003).
http://dx.doi.org/10.1364/JOSAB.20.002470
3.
3. J. Wang and W. J. Blau, “ Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A, Pure Appl. Opt. 11, 024001 (2009).
http://dx.doi.org/10.1088/1464-4258/11/2/024001
4.
4. N. Venkatram, R. Sathyavathi, and D. N. Rao, “ Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15, 12258 (2007).
http://dx.doi.org/10.1364/OE.15.012258
5.
5. N. Venkatram, D. N. Rao, and M. A. Akundi, “ Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13, 867 (2005).
http://dx.doi.org/10.1364/OPEX.13.000867
6.
6. S. Dengler, C. Kubel, A. Schwenke, G. Ritt, and B. Eberle, “ Near- and off-resonant optical limiting properties of gold-silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
http://dx.doi.org/10.1088/2040-8978/14/7/075203
7.
7. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, and J. Thomas, “ Evolution of nonlinear optical properties: From gold atomic clusters to plasmonic nanocrystals,” Nano Lett. 12, 4661 (2012).
http://dx.doi.org/10.1021/nl301988v
8.
8. M. Hari, S. Mathew, B. Nithyaja, S. Joseph, V. P. N. Nampoori, and P. Radhakrishnan, “ Saturable and reverse saturable absorption in aqueous silver nanoparticles at off-resonant wavelength,” Opt. Quantum Electron. 43, 49 (2012).
http://dx.doi.org/10.1007/s11082-011-9502-7
9.
9. M. Rashidian and D. Dorranian, “ Effect of concentration on the plasmonic absorption and optical nonlinearity of gold nanoparticles,” Opt. Eng. 51, 089001 (2012).
http://dx.doi.org/10.1117/1.OE.51.8.089001
10.
10. D. C. Kohlgraf-Owens and P. G. Kik, “ Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays,” Opt. Express 17, 15032 (2009).
http://dx.doi.org/10.1364/OE.17.015032
11.
11. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzan, and P. Mulvaney, “ Ultrafast nonlinear optical response in silica-capped gold nanoparticle films,” J. Lumin. 108, 365 (2004).
http://dx.doi.org/10.1016/j.jlumin.2004.01.077
12.
12. G. Ma, J. He, S. H. Tang, W. Sun, and Z. Shen, “ Size-dependence of nonlinearity in metal: Dielectric composite system induced by local field enhancement,” J. Nonlinear Opt. Phys. Mater. 12, 149 (2003).
http://dx.doi.org/10.1142/S0218863503001298
13.
13. G. Ma, W. Sun, S.-H. Tang, H. Zhang, Z. Shen, and S. Qian, “ Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27, 1043 (2002).
http://dx.doi.org/10.1364/OL.27.001043
14.
14. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “ Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760 (1990).
http://dx.doi.org/10.1109/3.53394
15.
15. D. Vincent, “ Optical limiting with carbon suspensions at selected wavelengths and pulse lengths,” J. Nonlinear Opt. Phys. 9, 243 (2000).
http://dx.doi.org/10.1142/S0218863500000285
16.
16. G. C. Papavassiliou, “ Optical properties of small inorganic and organic metal particles,” Prog. Solid State Chem. 12, 185 (1979).
http://dx.doi.org/10.1016/0079-6786(79)90001-3
17.
17. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, and M. Nogami, “ Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties,” J. Phys. Chem. C 111, 9095 (2007).
http://dx.doi.org/10.1021/jp068859b
18.
18. E. Hao, G. C. Schatz, and J. T. Hupp, “ Synthesis and optical properties of anisotropic metal nanoparticles,” J. Fluoresc. 14, 331 (2004).
http://dx.doi.org/10.1023/B:JOFL.0000031815.71450.74
19.
19. P. P. Kiran, B. N. S. Bhaktha, D. N. Rao, and G. De, “ Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717 (2004).
http://dx.doi.org/10.1063/1.1804228
20.
20. P. V. Kamat, M. Flumiani, and G. V. Hartland, “ Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation,” J. Phys. Chem. B 102, 3123 (1998).
http://dx.doi.org/10.1021/jp980009b
21.
21. Y. Gao, X. Zhang, Y. Li, H. Liu, Y. Wang, Q. Chang, W. Jiao, and Y. Song, “ Saturable absorption and reverse saturable absorption in platinum nanoparticles,” Opt. Commun. 251, 429 (2005).
http://dx.doi.org/10.1016/j.optcom.2005.03.003
22.
22. V. Joudrier, P. Bourdon, F. Hache, and C. Flytzanis, “ Nonlinear light scattering in a two-component medium: Optical limiting application,” Appl. Phys. B: Lasers Opt. 67, 627 (1998).
http://dx.doi.org/10.1007/s003400050557
23.
23. L. Polavarapu, N. Venkatram, W. Ji, and Q.-H. Xu, “ Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses,” ACS Appl. Mater. Interfaces 1, 2298 (2009).
http://dx.doi.org/10.1021/am900442u
24.
24. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “ The inherent optical nonlinearities of thin silver films,” Opt. Mater. 25, 439 (2004).
http://dx.doi.org/10.1016/j.optmat.2003.11.002
25.
25. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “ z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86, 6200 (1999).
http://dx.doi.org/10.1063/1.371675
26.
26. Y. Guillet, M. Rashidi-Huyeh, D. Prot, and B. Palpanta, “ Gold nanoparticle assemblies: Interplay between thermal effects and optical response,” Gold Bull. 41, 341 (2008).
http://dx.doi.org/10.1007/BF03214892
27.
27. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “ The optical Kerr effect in small metal particles and metal colloids: The case of gold,” Appl. Phys. A 47, 347 (1988).
http://dx.doi.org/10.1007/BF00615498
28.
28. N. Pincon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “ Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395 (2002).
http://dx.doi.org/10.1007/s10053-002-8889-x
29.
29. D. D. Smith, R. W. Boyd, and D. A. Gregory, “ Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625 (1997).
http://dx.doi.org/10.1364/JOSAB.14.001625
30.
30. H. Ma, R. Xiao, and P. Sheng, “ Third-order optical nonlinearity enhancement through composite microstructures,” J. Opt. Soc. Am. B 15, 1022 (1998).
http://dx.doi.org/10.1364/JOSAB.15.001022
31.
31. B. Palpant, in Non-Linear Optical Properites of Matter, edited by M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski (Springer, 2006), p. 461.
32.
32. J. Zhu, X. Huang, J.-J. Li, and J.-W. Shao, “ Theoretical calculation of enhancement factor of third-order nonlinear susceptibility in gold nanowire and nanotubeJ. Optoelectron. Adv. Mater. 11, 56 (2009).
33.
33. P. B. Johnson and R. W. Christy, “ Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
34.
34. V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “ Optical limiting with complex plasmonic nanoparticles,” J. Opt. 12, 065001 (2010).
http://dx.doi.org/10.1088/2040-8978/12/6/065001
35.
35. L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “ Optical limitation induced by gold clusters: Mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965 (2001).
http://dx.doi.org/10.1039/b106690k
36.
36. R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y.-P. Sun, “ Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788 (2007).
http://dx.doi.org/10.1016/j.optmat.2006.01.007
37.
37. L. Polavarapu, X. Qing-Hua, M. S. Dhoni, and J. Wei, “ Optical limiting properties of silver nanoprisms,” Appl. Phys. Lett. 92, 263110 (2008).
http://dx.doi.org/10.1063/1.2955530
38.
38. E. Sassaroli, K. C. P. Li, and B. E. O. Neill, “ Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications,” Phys. Med. Biol. 54, 5541 (2009).
http://dx.doi.org/10.1088/0031-9155/54/18/013
39.
39. A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, “ Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles,” New J. Phys. 13, 043018 (2011).
http://dx.doi.org/10.1088/1367-2630/13/4/043018
40.
40. L. François, M. Mostafavi, J. Belloni, J.-F. Delouis, J. Delaire, and P. Feneyrou, “ Optical limitation induced by gold clusters. 1. Size effect,” J. Phys. Chem. B 104, 6133 (2000).
http://dx.doi.org/10.1021/jp9944482
41.
41. A. Pyatenko, M. Yamaguchi, and M. Suzuki, “ Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG laser,” J. Phys. Chem. C 113, 9078 (2009).
http://dx.doi.org/10.1021/jp808300q
42.
42. R. Karimzadeh and N. Mansour, “ The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42, 783 (2010).
http://dx.doi.org/10.1016/j.optlastec.2009.12.003
43.
43. H. Aleali, L. Sarkhosh, M. Eslamifar, R. Karimzadeh, and N. Mansour, “ Thermo-optical properties of colloids enhanced by gold nanoparticles,” Jpn. J Appl. Phys., Part 1 49, 085002 (2010).
http://dx.doi.org/10.1143/JJAP.49.085002
44.
44. A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “ AuxAgy @ ZrO2 core-shell nanoparticles: Synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng., B 117, 173 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.11.010
45.
45. M. Anija, J. Thomas, N. Singh, A. Sreekumaran Nair, R. T. Tom, T. Pradeep, and R. Philip, “ Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: An investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.023
46.
46. See supplementary material at http://dx.doi.org/10.1063/1.4790798 for the details of the nanoparticle synthesis and characterization as well as simulation results of the spatial maps of susceptibility enhancement distributions. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4790798
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Extinction coefficients of commercial nanoparticle suspensions. The nanosphere dimensions and the concentrations are listed in the insets. The vertical dashed line indicates the position of the 532-nm laser wavelength. (a) Ag and (b) Au spheres.

Image of FIG. 2.

Click to view

FIG. 2.

Extinction coefficient of custom-synthesized Ag nanodisk. Solid line—measurements, dashed line—simulation (see text for details). Inset shows SEM micrographs of the nanodisks deposited on a silicon wafer for assessing particle size. Inset histogram is particle size distribution extracted from the top-down SEM using image analysis.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic of the irradiation setup. Inset shows a 3D irradiation beam profile in the sample plane. Beam diameter is 500 μm. FR = full reflector; Det = detector.

Image of FIG. 4.

Click to view

FIG. 4.

Experimentally determined transmission of the 80-nm diameter Au nanosphere suspension versus cumulative laser pulses at the same irradiation spot. Data acquired for three different fluence values: 140, 220, and 520 mJ/cm2/pulse. Solid lines are drawn to guide the eye. The “zero-pulse” value is obtained at low fluence (≤20 mJ/cm2/pulse) where no changes to the suspension are observed.

Image of FIG. 5.

Click to view

FIG. 5.

Transmission of 60-nm diameter Ag nanosphere suspension vs. input fluence. Diamonds are experimentally measured values, dashed line is a fit considering only RSA, and the solid line is a fit considering both SA and RSA. See text for details.

Image of FIG. 6.

Click to view

FIG. 6.

Output fluence vs. input fluence for irradiated 60 nm-diameter Au suspension for different aperture sizes (different half angles) in front of the rear detector (angle values as marked in the legend). Solid fits incorporate nonlinear scattering from Eqs. (1) and (6) (see text for discussion). The inset shows modeled scattering coefficient γs vs. subtended half-angle of the detector.

Image of FIG. 7.

Click to view

FIG. 7.

Calculated and observed ϕ, nonlinear absorption enhancement, referenced to “bulk” material for (a) Au and (b) Ag nanoparticles.

Image of FIG. 8.

Click to view

FIG. 8.

Non-linear scattering coefficient, γs, for 0.3° half-angle data for Au and Ag nanospheres and Ag nanodisks.

Tables

Generic image for table

Click to view

Table I.

Summary of the nonlinear fitting coefficients for all the samples tested in the study. See text for discussion.

Generic image for table

Click to view

Table II.

Reported “bulk” values of nonlinear absorption βm and susceptibility χ(3) for Au 25 and Ag 24 films.

Loading

Article metrics loading...

/content/aip/journal/jap/113/5/10.1063/1.4790798
2013-02-06
2014-04-19

Abstract

Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above ∼50 MW/cm2. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficients for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/5/1.4790798.html;jsessionid=5n8jtt19pjpd.x-aip-live-01?itemId=/content/aip/journal/jap/113/5/10.1063/1.4790798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/5/10.1063/1.4790798
10.1063/1.4790798
SEARCH_EXPAND_ITEM