Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/6/10.1063/1.4790174
1.
1. W. Horig, H. Neumann, and H. Sobotta, Thin Solid Films 48, 67 (1978).
http://dx.doi.org/10.1016/0040-6090(78)90332-2
2.
2. J. R. Tuttle, D. Albin, R. J. Matson, and R. Noufi, J. Appl. Phys. 66, 4408 (1989).
http://dx.doi.org/10.1063/1.343935
3.
3. T. Kawashima, S. Adachi, H. Miyake, and K. Sugiyama, J. Appl. Phys. 84, 5202 (1998).
http://dx.doi.org/10.1063/1.368772
4.
4. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, Phys. Rev. B 63, 075203 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075203
5.
5. C. A. Durante Rincon, E. Hernandez, M. I. Alonso, M. Garriga, S. M. Wasim, C. Rincon, and M. Leon, Mater. Chem. Phys. 70, 300 (2001).
http://dx.doi.org/10.1016/S0254-0584(00)00518-6
6.
6. P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, J. Appl. Phys. 94, 879 (2003).
http://dx.doi.org/10.1063/1.1581345
7.
7. S. Han, F. S. Hasoon, H. A. Al-Thani, A. M. Hermann, and D. H. Levi, Appl. Phys. Lett. 86, 021903 (2005).
http://dx.doi.org/10.1063/1.1849840
8.
8. S. Han, C. Persson, F. S. Hasoon, H. A. Al-Thani, A. M. Hermann, and D. H. Levi, Phys. Rev. B 74, 085212 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.085212
9.
9. S. Han, F. S. Hasoon, A. M. Hermann, and D. H. Levi, Appl. Phys. Lett. 91, 021904 (2007).
http://dx.doi.org/10.1063/1.2755718
10.
10. S. Theodoropoulou, D. Papadimitriou, K. Anestou, C. Cobet, and N. Esser, Semicond. Sci. Technol. 24, 015014 (2009).
http://dx.doi.org/10.1088/0268-1242/24/1/015014
11.
11. F. A. Abou-Elfotouh, G. S. Horner, T. J. Coutts, and M. W. Wanlass, Solar cells 30, 473 (1991).
http://dx.doi.org/10.1016/0379-6787(91)90079-5
12.
12. M. L. Hidalgo, M. Lachab, A. Zouaoui, M. Alhamed, C. Llinares, J. P. Peyrade, and J. Galibert, Phys. Status Solidi B 200, 297 (1997).
http://dx.doi.org/10.1002/1521-3951(199703)200:1<297::AID-PSSB297>3.0.CO;2-C
13.
13. A. Kreuter, G. Wagner, K. Otte, G. Lippold, A. Schindler, and M. Schubert, Appl. Phys. Lett. 78, 195 (2001).
http://dx.doi.org/10.1063/1.1334354
14.
14. T. Begou, J. D. Walker, D. Attygalle, V. Ranjan, R. W. Collins, and S. Marsillac, Phys. Status Solidi (RRL) 5, 217 (2011).
http://dx.doi.org/10.1002/pssr.201105204
15.
15. S. Chichibu, T. Mizutani, K. Murakami, T. Shioda, T. Kurafuji, H. Nakanishi, S. Niki, P. J. Fons, and A. Yamada, J. Appl. Phys. 83, 3678 (1998).
http://dx.doi.org/10.1063/1.366588
16.
16. S. Han, F. S. Hasoon, J. W. Pankow, A. M. Hermann, and D. H. Levi, Appl. Phys. Lett. 87, 151904 (2005).
http://dx.doi.org/10.1063/1.2089154
17.
17. V. Ranjan, R. W. Collins, and S. Marsillac, Phys. Status Solidi (RRL) 6, 10 (2012).
http://dx.doi.org/10.1002/pssr.201105385
18.
18. K. Zeaiter, and C. Llinares, J. Appl. Phys. 86, 6822 (1999).
http://dx.doi.org/10.1063/1.371757
19.
19. M. I. Alonso, M. Garriga, C. A. Durante Rincon, E. Hernandez, and M. Leon, Appl. Phys. A 74, 659 (2002).
http://dx.doi.org/10.1007/s003390100931
20.
20. G. W. El Haj Moussa, M. Ajaka, M. El Tahchi, E. Eid, and C. Llinares, Phys. Status Solidi A 202, 469 (2005).
http://dx.doi.org/10.1002/pssa.200406934
21.
21.For a review, see U. Rau and H. W. Schock, Appl. Phys. A 69, 131 (1999).
http://dx.doi.org/10.1007/s003390050984
22.
22.For a review, see S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovoltaics 18, 453 (2010).
http://dx.doi.org/10.1002/pip.969
23.
23. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, Appl. Phys. Lett. 65, 198 (1994).
http://dx.doi.org/10.1063/1.112670
24.
24. M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, and R. Kniese, Thin Solid Films 517, 2111 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.10.126
25.
25. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
http://dx.doi.org/10.1002/pip.822
26.
26. J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 5, 5003 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.5003
27.
27. J. L. Shay and H. M. Kasper, Phys. Rev. Lett. 29, 1162 (1972).
http://dx.doi.org/10.1103/PhysRevLett.29.1162
28.
28. J. L. Shay, B. Tell, H. M. Kasper, and L. M. Schiavone, Phys. Rev. B 7, 4485 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.4485
29.
29. K. Yoodee, J. C. Woolley, and V. Sayakanit, Phys. Rev. B 30, 5904 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.5904
30.
30. J. E. Jaffe and A. Zunger, Phys. Rev. B 28, 5822 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.5822
31.
31. J. E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.1882
32.
32. C. Persson and A. Zunger, Appl. Phys. Lett. 87, 211904 (2005).
http://dx.doi.org/10.1063/1.2132537
33.
33. S. Siebentritt, M. Igalson, C. Persson, and S. Lany, Prog. Photovoltaics 18, 390 (2010).
http://dx.doi.org/10.1002/pip.936
34.
34. Y. Li, W. Fan, H. Sun, X. Cheng, P. Li, and X. Zhao, J. Appl. Phys. 109, 113535 (2011).
http://dx.doi.org/10.1063/1.3592238
35.
35. Y. Zhang, X. Yuan, X. Sun, B. Shih, P. Zhang, and W. Zhang, Phys. Rev. B 84, 075127 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075127
36.
36. S. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998).
http://dx.doi.org/10.1063/1.121548
37.
37. M. Turcu and U. Rau, Thin Solid Films 431–432, 158 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00225-6
38.
38. S. Shirakata, S. Chichibu, S. Isomura, and H. Nakanishi, Jpn. J. Appl. Phys., Part 2 36, L543 (1997).
http://dx.doi.org/10.1143/JJAP.36.L543
39.
39. D. Schmid, M. Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys. 73, 2902 (1993).
http://dx.doi.org/10.1063/1.353020
40.
40. R. Herberholz, U. Rau, H. W. Schock, T. Haalboom, T. Godecke, F. Ernst, C. Beilharz, K. W. Benz, and D. Cahen, Eur. Phys. J.: Appl. Phys. 6, 131 (1999).
http://dx.doi.org/10.1051/epjap:1999162
41.
41. Y. Yan, K. M. Jones, J. Abushama, M. Young, S. Asher, M. M. Al-Jassim, and R. Noufi, Appl. Phys. Lett. 81, 1008 (2002).
http://dx.doi.org/10.1063/1.1498499
42.
42. D. Liao and A. Rockett, Appl. Phys. Lett. 82, 2829 (2003).
http://dx.doi.org/10.1063/1.1570516
43.
43. I. M. Kotschau and H. W. Schock, J. Phys. Chem. Solids 64, 1559 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00074-X
44.
44. M. Bar, I. Repins, M. A. Contreras, L. Weinhardt, R. Noufi, and C. Heske, Appl. Phys. Lett. 95, 052106 (2009).
http://dx.doi.org/10.1063/1.3194153
45.
45. M. Morkel, L. Weinhardt, B. Lohmuller, C. Heske, E. Umbach, W. Riedl, S. Zweigart, and F. Karg, Appl. Phys. Lett. 79, 4482 (2001).
http://dx.doi.org/10.1063/1.1428408
46.
46. M. Bar, S. Nishiwaki, L. Weinhardt, S. Pookpanratana, O. Fuchs, M. Blum, W. Yang, J. D. Denlinger, W. N. Shafarman, and C. Heske, Appl. Phys. Lett. 93, 244103 (2008).
http://dx.doi.org/10.1063/1.3046780
47.
47. M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander, and M. M. Al-Jassim, J. Appl. Phys. 82, 2896 (1997).
http://dx.doi.org/10.1063/1.366122
48.
48. C. Rincon, J. Gonzalez, and G. S. Perez, Phys. Status Solidi B 108, K19 (1981).
http://dx.doi.org/10.1002/pssb.2221080139
49.
49. T. Tinoco, C. Rincon, M. Quintero, and G. S. Perez, Phys. Status Solidi A 124, 427 (1991).
http://dx.doi.org/10.1002/pssa.2211240206
50.
50. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007).
51.
51. H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, Phys. Rev. B 61, 10832 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10832
52.
52. M. Akagawa and H. Fujiwara, J. Appl. Phys. 110, 073518 (2011).
http://dx.doi.org/10.1063/1.3646521
53.
53. C. Guillen and J. Herrero, J. Electrochem. Soc. 141, 225 (1994).
http://dx.doi.org/10.1149/1.2054688
54.
54. C. Guillen and J. Herrero, Sol. Eng. Mater. Sol. Cells 43, 47 (1996).
http://dx.doi.org/10.1016/0927-0248(95)00163-8
55.
55. S. Ishizuka, A. Yamada, H. Shibata, P. Fons, K. Sakurai, K. Matsubara, and S. Niki, Sol. Eng. Mater. Sol. Cells 93, 792 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.09.043
56.
56. T. Nakada, D. Iga, H. Ohbo, and A. Kunioka, Jpn. J. Appl. Phys., Part 1 36, 732 (1997).
http://dx.doi.org/10.1143/JJAP.36.732
57.
57. W. Paszkowicz, P. Lewandowska, and R. Bacewicz, J. Alloys Compd. 362, 241 (2004).
http://dx.doi.org/10.1016/S0925-8388(03)00592-9
58.
58. S. Yamazoe, H. Kou, and T. Wada, J. Mater. Res. 26, 1504 (2011).
http://dx.doi.org/10.1557/jmr.2011.63
59.
59. S. Nomura, S. Ouchi, and S. Endo, Jpn. J. Appl. Phys., Part 2 36, L1075 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1075
60.
60. C. Rincon, S. M. Wasim, G. Marin, J. M. Delgado, J. R. Huntzinger, A. Zwick, and J. Galibert, Appl. Phys. Lett. 73, 441 (1998).
http://dx.doi.org/10.1063/1.121893
61.
61. W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.07.011
62.
62. L. L. Kazmerski, O. Jamjoum, P. J. Ireland, and S. K. Deb, J. Vac. Sci. Technol. 19, 467 (1981).
http://dx.doi.org/10.1116/1.571040
63.
63. L. L. Kazmerski, O. Jamjoum, J. F. Wager, P. J. Ireland, and K. J. Bachmann, J. Vac. Sci. Technol. A 1, 668 (1983).
http://dx.doi.org/10.1116/1.571973
64.
64. R. Wurz, M. Rusu, T. Schedel-Niedrig, M. C. Lux-Steiner, H. Bluhm, M. Havecker, E. Kleimenov, A. Knop-Gericke, and R. Schlogl, Surf. Sci. 580, 80 (2005).
http://dx.doi.org/10.1016/j.susc.2005.01.054
65.
65. D. E. Aspnes, Thin Solid Films 89, 249 (1982).
http://dx.doi.org/10.1016/0040-6090(82)90590-9
66.
66. C. M. Herzinger, B. Johs, W. A. McGahan, and J. A. Woollam, J. Appl. Phys. 83, 3323 (1998).
http://dx.doi.org/10.1063/1.367101
67.
67. H. Fujiwara, M. Kondo, and A. Matsuda, J. Appl. Phys. 93, 2400 (2003).
http://dx.doi.org/10.1063/1.1539920
68.
68. H. Fujiwara, M. Kondo, and A. Matsuda, Phys. Rev. B 63, 115306 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.115306
69.
69. J. Koh, Y. Lu, C. R. Wronski, Y. Kuang, R. W. Collins, T. T. Tsong, and Y. E. Strausser, Appl. Phys. Lett. 69, 1297 (1996).
http://dx.doi.org/10.1063/1.117397
70.
70. G. F. Feng and R. Zallen, Phys. Rev. B 40, 1064 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.1064
71.
71. S. Boultadakis, S. Logothetidis, and S. Ves, J. Appl. Phys. 73, 914 (1993).
http://dx.doi.org/10.1063/1.353304
72.
72. Handbook of Ellipsometry, edited by H. G. Tompkins and E. A. Irene (William Andrew, New York, 2005).
73.
73. M. Leon, R. Serna, S. Levcenko, G. Gurieva, J. M. Merino, E. J. Friedrich, and E. Arushanov, J. Appl. Phys. 104, 093507 (2008).
http://dx.doi.org/10.1063/1.2986159
74.
74. S. Levcenko, L. Duran, G. Gurieva, M. I. Alonso, E. Arushanov, C. A. Durante Rincon, and M. Leon, J. Appl. Phys. 107, 033502 (2010).
http://dx.doi.org/10.1063/1.3298499
75.
75. M. Leon, R. Serna, S. Levcenko, G. Gurieva, J. M. Merino, E. J. Friedrich, S. Lehmann, T. Schedel-Niedrig, S. Schorr, M. C. Lux-Steiner, and E. Arushanov, Phys. Status Solidi C 6, 1078 (2009).
http://dx.doi.org/10.1002/pssc.200881134
76.
76. J. R. Tuttle, D. S. Albin, and R. Noufi, Sol. Cells 27, 231 (1989).
http://dx.doi.org/10.1016/0379-6787(89)90031-8
77.
77. R. Noufi, R. Axton, C. Herrington, and S. K. Deb, Appl. Phys. Lett. 45, 668 (1984).
http://dx.doi.org/10.1063/1.95350
78.
78. T. Ohtani, Y. Tachibana, J. Ogura, T. Miyake, Y. Okada, and Y. Yokota, J. Alloys Compd. 279, 136 (1998).
http://dx.doi.org/10.1016/S0925-8388(98)00674-4
79.
79. K. Okamoto, S. Kawai, and R. Kiriyama, Jpn. J. Appl. Phys., Part 1 8, 718 (1969).
http://dx.doi.org/10.1143/JJAP.8.718
80.
80. H. Fujiwara and M. Kondo, Phys. Rev. B 71, 075109 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.075109
81.
81. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.9174
82.
82. P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Phys. Rev. B 36, 4821 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.4821
83.
83. A. Savitzky and J. E. Golay, Anal. Chem. 36, 1627 (1964).
http://dx.doi.org/10.1021/ac60214a047
84.
84. J. Steinier, Y. Termonia, and J. Deltour, Anal. Chem. 44, 1906 (1972).
http://dx.doi.org/10.1021/ac60319a045
85.
85. J. Paier, R. Asahi, A. Nagoya, and G. Kresse, Phys. Rev. B 79, 115126 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115126
86.
86. J. N. Gan, J. Tauc, V. G. Lambrecht, Jr., and M. Robbins, Phys. Rev. B 12, 5797 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.5797
87.
87. W. Horig, H. Neumann, and I. Godmanis, Solid State Commun. 36, 181 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90678-X
88.
88. S. B. Zhang, S. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9642
89.
89. K. Takarabe, K. Kawai, S. Minomura, T. Irie, and M. Taniguchi, J. Appl. Phys. 71, 441 (1992).
http://dx.doi.org/10.1063/1.350675
90.
90. T. Tanaka, N. Tanahashi, T. Yamaguchi, and A. Yoshida, Sol. Eng. Mater. Sol. Cells 50, 13 (1998).
http://dx.doi.org/10.1016/S0927-0248(97)00095-0
91.
91. M. Leon, S. Levcenko, A. Nateprov, A. Nicorici, J. M. Merino, R. Serna, and E. Arushanov, J. Phys. D 40, 740 (2007).
http://dx.doi.org/10.1088/0022-3727/40/3/008
92.
92. T. Negami, N. Kohara, M. Nishitani, and T. Wada, Jpn. J. Appl. Phys., Part 2 33, L1251 (1994).
http://dx.doi.org/10.1143/JJAP.33.L1251
93.
93. G. Marin, S. Tauleigne, S. M. Wasim, R. Guevara, J. M. Delgado, C. Rincon, A. E. Mora, and G. S. Perez, Mater. Res. Bull. 33, 1057 (1998).
http://dx.doi.org/10.1016/S0025-5408(98)00078-6
94.
94. C. Rincon, S. M. Wasim, G. Marin, and I. Molina, J. Appl. Phys. 93, 780 (2003).
http://dx.doi.org/10.1063/1.1528305
95.
95. M. Leon, R. Serna, S. Levcenko, A. Nateprov, A. Nicorici, J. M. Merino, and E. Arushanov, Phys. Status Solidi A 203, 2913 (2006).
http://dx.doi.org/10.1002/pssa.200669504
96.
96. M. Leon, R. Serna, S. Levcenko, A. Nicorici, J. M. Merino, E. J. Friedrich, and E. Arushanov, J. Appl. Phys. 103, 103503 (2008).
http://dx.doi.org/10.1063/1.2921865
97.
97. L. Duran, S. M. Wasim, C. A. Durante Rincon, E. Hernandez, C. Rincon, J. M. Delgado, J. Castro, and J. Contreras, Phys. Status Solidi A 199, 220 (2003).
http://dx.doi.org/10.1002/pssa.200306671
98.
98. C. Rincon, S. M. Wasim, G. Marin, R. Marquez, L. Nieves, G. S. Perez, and E. Medina, J. Appl. Phys. 90, 4423 (2001).
http://dx.doi.org/10.1063/1.1405144
99.
99. S. Levcenko, N. N. Syrbu, E. Arushanov, V. Tezlevan, R. Fernandez-Ruiz, J. M. Merino, and M. Leon, J. Appl. Phys. 99, 073513 (2006).
http://dx.doi.org/10.1063/1.2186379
100.
100. L. Duran, J. Castro, J. Naranjho, J. R. Fermin, C. A. Durante Rinon, Mater. Chem. Phys. 114, 73 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.08.020
101.
101. S. B. Zhang, S. Wei, and A. Zunger, Phys. Rev. Lett. 78, 4059 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4059
102.
102. C. Stephan, S. Schorr, M. Tovar, and H. Schock, Appl. Phys. Lett. 98, 091906 (2011).
http://dx.doi.org/10.1063/1.3559621
103.
103. T. Negami, N. Kohara, M. Nishitani, T. Wada, and T. Hirao, Appl. Phys. Lett. 67, 825 (1995).
http://dx.doi.org/10.1063/1.115456
104.
104. S. Wei and A. Zunger, J. Appl. Phys. 78, 3846 (1995).
http://dx.doi.org/10.1063/1.359901
105.
105. M. I. Alonso, M. Garriga, C. A. Durante Rincon, and M. Leon, J. Appl. Phys. 88, 5796 (2000).
http://dx.doi.org/10.1063/1.1319169
106.
106. B. Johs, C. M. Herzinger, J. H. Dinan, A. Cornfeld, and J. D. Benson, Thin Solid Films 313–314, 137 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00800-6
107.
107. J. Chen, J. Li, M. N. Sestak, X. Tan, N. J. Podraza, and R. W. Collins, “Parameterization of the dielectric function of polycrystalline CdTe: Applications in thin film photovoltaics” (unpublished).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/6/10.1063/1.4790174
Loading
/content/aip/journal/jap/113/6/10.1063/1.4790174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/6/10.1063/1.4790174
2013-02-11
2016-05-02

Abstract

The dielectric functions of Cu(In, Ga)Se2(CIGS)-based polycrystalline layers with different Ga and Cu compositions have been determined by applying spectroscopic ellipsometry (SE) in a wide energy range of 0.7–6.5 eV. To suppress SE analysis errors induced by rough surface and compositional fluctuation, quite thin CIGS layers (<60 nm) with high uniformity toward the growth direction have been characterized using a self-consistent SE analysis method. We find that the optical model used in many previous studies is oversimplified particularly for the roughness/overlayer contribution, and all the artifacts arising from the simplified analysis have been removed almost completely in our approach. The CIGS dielectric functions with the variation of the Ga composition [x = Ga/(In + Ga)] revealed that (i) the whole CIGS dielectric function shifts toward higher energies with x, (ii) the band gap increases linearly with x without the band-gap bowing effect, and (iii) the overall absorption coefficients are significantly smaller than those reported earlier. Furthermore, the reduction of the Cu composition [y = Cu/(In + Ga)] leads to (i) the linear increase in the band-edge transition energy and (ii) the decrease in the absorption coefficient, due to the smaller interaction of the Cu 3d orbitals near the valence band maximum in the Cu-deficient layers. When y > 1, on the other hand, the free-carrier absorption increases drastically due to the formation of a semi-metallic Cu xSe phase with a constant band gap in the CIGS component. In this study, by using a standard critical-point line-shape analysis, the critical point energies of the CIGS-based layers with different Ga and Cu compositions have been determined. Based on these results, we will discuss the optical transitions in CIGS-based polycrystalline materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/6/1.4790174.html;jsessionid=PPn2Fyr9dGC01oWrRqrXFUVl.x-aip-live-03?itemId=/content/aip/journal/jap/113/6/10.1063/1.4790174&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd