1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Polymeric photovoltaics with various metallic plasmonic nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/6/10.1063/1.4790504
1.
1. M. A. Green, “ Third generation photovoltaics: Solar cells for 2020 and beyond,” Physica E 14, 65 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00361-2
2.
2. M. A. Green, “ Recent developments in photovoltaics,” Sol. Energy 76, 3 (2004).
http://dx.doi.org/10.1016/S0038-092X(03)00065-3
3.
3. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “ 26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells 93, 1488 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.03.027
4.
4. A. Romeo, A. Terheggen, D. Abou-Ras, D. L. Bätzner, F.-J. Haug, M. Kälin, D. Rudmann, and A. N. Tiwari, “ Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells,” Prog. Photovoltaics 12, 93 (2004).
http://dx.doi.org/10.1002/pip.527
5.
5. P. Peumans, S. Uchida, and S. R. Forrest, “ Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425, 158 (2003).
http://dx.doi.org/10.1038/nature01949
6.
6. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “ High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
7.
7. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “ Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
8.
8. C. W. Tang, “ Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
9.
9. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “ Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
10.
10. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T.-H. Lai, J. R. Reynolds, and F. So, “ High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells,” Nat. Photonics 6, 115 (2012).
http://dx.doi.org/10.1038/nphoton.2011.317
11.
11. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, “ Solution-processed small-molecule solar cells with 6.7% efficiency,” Nature Mater. 11, 44 (2012).
http://dx.doi.org/10.1038/nmat3160
12.
12. C. Wu, “ Thinking small for solar,” MRS Bull. 37, 194 (2012).
http://dx.doi.org/10.1557/mrs.2012.62
13.
13. P. E. Shaw, A. Ruseckas, I. D. W. Samuel, “ Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. 20, 3516 (2008).
http://dx.doi.org/10.1002/adma.200800982
14.
14. S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, “ Highly efficient tandem polymer photovoltaic cells,” Adv. Mater. 22, 380 (2010).
http://dx.doi.org/10.1002/adma.200901624
15.
15. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “ Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
16.
16. M.-H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L.-M. Chen, and Y. Yang, “ Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions,” Adv. Mater. 21, 4238 (2009).
http://dx.doi.org/10.1002/adma.200900510
17.
17. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “ An effective light trapping configuration for thin-film solar cells”, Appl. Phys. Lett. 91, 243501 (2007).
http://dx.doi.org/10.1063/1.2789677
18.
18. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “ Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
http://dx.doi.org/10.1063/1.2188600
19.
19. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “ Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742 (2009).
http://dx.doi.org/10.1021/nl901232p
20.
20. F. Chen, J. Wu, C. Lee, Y. Hong, C. Kuo, and M. H. Huang, “ Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 013305 (2009).
http://dx.doi.org/10.1063/1.3174914
21.
21. J. Wu, F. Chen, Y. Hsiao, F. Chien, P. Chen, C. Kuo, M. Huang, and C. Hsu, “ Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959 (2011).
http://dx.doi.org/10.1021/nn102295p
22.
22. H. Shen, P. Bienstman, and B. Maes, “ Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
http://dx.doi.org/10.1063/1.3243163
23.
23. W. Sha, W. Choy, Y. Liu, and W. Chew, “ Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99, 113304 (2011).
http://dx.doi.org/10.1063/1.3638466
24.
24. A. E. Ostfeld and D. Pacifici, “ Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98, 113112 (2011).
http://dx.doi.org/10.1063/1.3567543
25.
25. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “ Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18, A620 (2010).
http://dx.doi.org/10.1364/OE.18.00A620
26.
26. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “ Double plasmonic structure design for broadband absorption enhancement in molecular organic solar cells,” J. Photon. Energy 1, 011121 (2011).
http://dx.doi.org/10.1117/1.3585876
27.
27. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “ Volumetric plasmonic resonator architechture for thin film solar cells,” Appl. Phys. Lett. 98, 093117 (2011).
http://dx.doi.org/10.1063/1.3560446
28.
28. W. Sha, W. Choy, and W. Chew, “ Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett. 36, 478 (2011).
http://dx.doi.org/10.1364/OL.36.000478
29.
29. C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, “ Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010).
http://dx.doi.org/10.1063/1.3377791
30.
30. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “ Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19, 14200 (2011).
http://dx.doi.org/10.1364/OE.19.014200
31.
31. M. Kang, T. Xu, H. Park, X. Luo, and L. Guo, “ Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. 22, 4378 (2010).
http://dx.doi.org/10.1002/adma.201001395
32.
32. K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “ Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007).
http://dx.doi.org/10.1063/1.2782910
33.
33. H. A. Atwater and A. Polman, “ Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
34.
34. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “ Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725 (2009).
http://dx.doi.org/10.1364/OL.34.003725
35.
35. J. N. Munday and H. A. Atwater, “ Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11, 2195 (2011).
http://dx.doi.org/10.1021/nl101875t
36.
36. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “ Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504 (2009).
http://dx.doi.org/10.1002/adma.200900331
37.
37. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “ Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10, 2012 (2010).
http://dx.doi.org/10.1021/nl904057p
38.
38. P. B. Catrysse and S. Fan, “ Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10, 2944 (2010).
http://dx.doi.org/10.1021/nl1011239
39.
39. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “ Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002).
http://dx.doi.org/10.1063/1.1446988
40.
40.Reference Guide for FDTD Solution Release 7.5 (2011), Lumerical Solutions Inc.
41.
41.See supplementary material at http://dx.doi.org/10.1063/1.4790504 for the optimizations of (1) the thickness of the bottom metallic nanohole arrays, (2) the period of the bottom metallic nanohole arrays, (3) the diameter of the top metallic nanodisc arrays; and (4) Electric field distributions for the hybrid SPP modes and two uncoupled SPP modes. [Supplementary Material]
42.
42. M. J. Weber, Handbook of Optical Materials (CRC, Boca Raton, 2003).
43.
43. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
44.
44. C. F. Bohren and D. R. Huffman, Aborption and scattering of light by small particles (Wiley, New York, 1983).
45.
45. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
46.
46. K. J. Moreno, I. Moggio, E. Arias, I. Llarena, S. E. Moya, R. F. Ziolo, and H. Barrientos, “ Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT:PSS),” J. Nanosci. Nanotechnol. 9, 3987 (2009).
http://dx.doi.org/10.1166/jnn.2009.215
47.
47. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “ Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
http://dx.doi.org/10.1038/ncomms1528
48.
48. C. M. Watts, X. L. Liu, and W. J. Padilla, “ Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98 (2012).
http://dx.doi.org/10.1002/adma.201200674
49.
49. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “ Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).
http://dx.doi.org/10.1021/nl9041033
50.
50. S. Y. Chou and W. Ding, “ Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21, A60 (2013).
http://dx.doi.org/10.1364/OE.21.000A60
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/6/10.1063/1.4790504
Loading
/content/aip/journal/jap/113/6/10.1063/1.4790504
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/6/10.1063/1.4790504
2013-02-14
2015-04-27

Abstract

Broadband light absorption enhancement is numerically investigated for the active light harvesting layer of an organic photovoltaic (OPV), which consists of a blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Periodic plasmonic nanostructures placed above and below the active layer incorporate Ag, Al, Au, or a combination of two different metals. Three dimensional (3D) full-field electromagnetic simulations are applied to determine the effect of varying the metal employed in the plasmonic nanostructures on the absorption enhancement of the OPV. In addition, the geometric parameters (e.g., film thickness, period, and diameter) of the symmetrically distributed top and bottom metal (Ag, Al, or Au) nanostructures were varied to optimize the device structure and delineate the mechanism(s) leading to the absorption enhancement. A spectrally broadband, polarization-insensitive, and wide-angle absorption enhancement is obtained using a double plasmonic nanostructure and is attributed to the combined excitation of localized and single-interface surface plasmon polariton modes. The total photon absorption of the OPV with the optimized double plasmonic Ag nanostructures was found to be enhanced by as much as 82.8% and 80.4% under normal (0°) and 60° light incidence, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/6/1.4790504.html;jsessionid=2mp7en84dtgd6.x-aip-live-02?itemId=/content/aip/journal/jap/113/6/10.1063/1.4790504&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polymeric photovoltaics with various metallic plasmonic nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/6/10.1063/1.4790504
10.1063/1.4790504
SEARCH_EXPAND_ITEM