Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
2. E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “ Interference with correlated photons: Five quantum mechanics experiments for undergraduates,” Am. J. Phys. 73, 127 (2005).
3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin 1988).
4. E. Ozbay, “ Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189 (2006).
5. N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “ Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177181 (2012).
6. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang and H. Ming, “ Excitations of surface plasmon polaritons guided mode by Rhodamine B molecules in PMMA stripe,” Opt. Lett. 35, 408 (2010).
7. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “ Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
8. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “ Generation of single optical plasmon in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
9. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “ Plasmon-assisted transmission of entangled photons,” Nature 418, 304 (2002).
10. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “ Deterministic quantum plasmonics,” Nano Lett. 10, 4566 (2010).
11. G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Özdemir, M. S. Kim, and S. Maier, “ Quantum statistics of surface plasmon polariton in metallic stripe waveguides,” Nano Lett. 12, 2504 (2012).
12. Quantum State Estimation, edited by M. G. A. Paris and J. Řeháček, Lecture Notes in Physics (Springer, Berlin, 2004), Vol. 649.
13. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “ Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244 (1993).
14. D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, “ Measurement of number-phase uncertainty relations of optical fields,” Phys. Rev. A 48, 3159 (1993).
15. J. E. Sipe, “ Photon wave functions,” Phys. Rev. A 52, 1875 (1995).
16. B. J. Smith and M. G. Raymer, “ Photon wave functions, wave-packet quantization of light, and coherence theory,” New J. Phys. 9, 414 (2007).
17. J. S. Lundeen, B. Sutherlamd, A. Patel, C. Stewart, and C. Bamber, “ Direct measurement of the quantum wavefunction,” Nature 474, 188 (2011).
18. O. Hosten, “ How to catch a wave,” Nature 474, 170 (2011).
19. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “ Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889 (1996).
20. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “ How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
21. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “ Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220 (2008).
22. C. K. Hong, and L. Mandel, “ Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409 (1985).
23. J. J. Thom. M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “ Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210 (2004).
24. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “ Image formation in wide-field microscopes based on leakage of surface-coupled fluorescence,” IEEE Photonics J. 1, 153 (2009).
25. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “ Direct observation of photonic fermi surfaces by plasmon tomography,” Appl. Phys. Lett. 98, 151113 (2011).
26. C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “ Equifrequency curve dispersion in dielectric-loaded plasmonic crystalsJ. Appl. Phys. 111, 073105 (2012).
27. C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “ Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express 20, 8658 (2012).
28. Y. K. Chen, D. G. Zhang, X. X. Wang, C Liu, P. Wang, and H. Ming, “ Launching plasmonic Bloch waves with excited dye molecules,” Nanotechnology 23, 475202 (2012).
29. R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “ Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys. 110, 083109 (2011).
30. C. J. Regan, R. Rodriguez, S. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “ Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20, 20827 (2012).
31. L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “ Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys. 109, 023101 (2011).
32. A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, and L. Grave de Peralta, “ Erratum: Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys. 109, 119901 (2011).
33. S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “ Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255 (2010).
34. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “ Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568 (2004).
35. M. Beck, “ Comparing measurements of g2(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B 24, 2972 (2007).

Data & Media loading...


Article metrics loading...



We report the direct excitation and detection of single-photon surface plasmon polariton (SPP) using a SPP tomography arrangement. Temporally spaced photons produced by spontaneous parametric downconversion were used to excite single-photon SPPs. The quantum statistics of the leakage radiation was studied using a Hanbury-Brown & Twiss correlator arrangement. We observed a violation of the second order coherence test indicating leakage of temporally spaced photons. This demonstrates that leakage radiation associated with SPPs excited by single photons is composed of temporally spaced photons. Reaching the quantum regime of SPP tomography opens the door for further advances in SPP quantum state determination using SPP tomography.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd