1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Toward surface plasmon polariton quantum-state tomography
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/7/10.1063/1.4792305
1.
1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
2.
2. E. J. Galvez, C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer, “ Interference with correlated photons: Five quantum mechanics experiments for undergraduates,” Am. J. Phys. 73, 127 (2005).
http://dx.doi.org/10.1119/1.1796811
3.
3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin 1988).
4.
4. E. Ozbay, “ Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189 (2006).
http://dx.doi.org/10.1126/science.1114849
5.
5. N. Hartmann, G. Piredda, J. Berthelot, G. Colas des Francs, A. Bouhelier, and A. Hartschuh, “ Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter,” Nano Lett. 12, 177181 (2012).
http://dx.doi.org/10.1021/nl203270b
6.
6. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang and H. Ming, “ Excitations of surface plasmon polaritons guided mode by Rhodamine B molecules in PMMA stripe,” Opt. Lett. 35, 408 (2010).
http://dx.doi.org/10.1364/OL.35.000408
7.
7. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “ Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.053002
8.
8. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “ Generation of single optical plasmon in metallic nanowires coupled to quantum dots,” Nature 450, 402 (2007).
http://dx.doi.org/10.1038/nature06230
9.
9. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “ Plasmon-assisted transmission of entangled photons,” Nature 418, 304 (2002).
http://dx.doi.org/10.1038/nature00869
10.
10. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “ Deterministic quantum plasmonics,” Nano Lett. 10, 4566 (2010).
http://dx.doi.org/10.1021/nl102568m
11.
11. G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Özdemir, M. S. Kim, and S. Maier, “ Quantum statistics of surface plasmon polariton in metallic stripe waveguides,” Nano Lett. 12, 2504 (2012).
http://dx.doi.org/10.1021/nl300671w
12.
12. Quantum State Estimation, edited by M. G. A. Paris and J. Řeháček, Lecture Notes in Physics (Springer, Berlin, 2004), Vol. 649.
13.
13. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “ Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1244
14.
14. D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, “ Measurement of number-phase uncertainty relations of optical fields,” Phys. Rev. A 48, 3159 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.3159
15.
15. J. E. Sipe, “ Photon wave functions,” Phys. Rev. A 52, 1875 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.1875
16.
16. B. J. Smith and M. G. Raymer, “ Photon wave functions, wave-packet quantization of light, and coherence theory,” New J. Phys. 9, 414 (2007).
http://dx.doi.org/10.1088/1367-2630/9/11/414
17.
17. J. S. Lundeen, B. Sutherlamd, A. Patel, C. Stewart, and C. Bamber, “ Direct measurement of the quantum wavefunction,” Nature 474, 188 (2011).
http://dx.doi.org/10.1038/nature10120
18.
18. O. Hosten, “ How to catch a wave,” Nature 474, 170 (2011).
http://dx.doi.org/10.1038/474170a
19.
19. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “ Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1889
20.
20. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “ How to erase surface plasmon fringes,” Appl. Phys. Lett. 89, 091117 (2006).
http://dx.doi.org/10.1063/1.2339043
21.
21. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “ Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng., B 149, 220 (2008).
http://dx.doi.org/10.1016/j.mseb.2007.10.010
22.
22. C. K. Hong, and L. Mandel, “ Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.2409
23.
23. J. J. Thom. M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “ Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210 (2004).
http://dx.doi.org/10.1119/1.1737397
24.
24. S. P. Frisbie, C. Chesnutt, M. E. Holtz, A. Krishnan, L. Grave de Peralta, and A. A. Bernussi, “ Image formation in wide-field microscopes based on leakage of surface-coupled fluorescence,” IEEE Photonics J. 1, 153 (2009).
http://dx.doi.org/10.1109/JPHOT.2009.2028307
25.
25. C. J. Regan, A. Krishnan, R. Lopez-Boada, L. Grave de Peralta, and A. A. Bernussi, “ Direct observation of photonic fermi surfaces by plasmon tomography,” Appl. Phys. Lett. 98, 151113 (2011).
http://dx.doi.org/10.1063/1.3581050
26.
26. C. J. Regan, L. Grave de Peralta, and A. A. Bernussi, “ Equifrequency curve dispersion in dielectric-loaded plasmonic crystalsJ. Appl. Phys. 111, 073105 (2012).
http://dx.doi.org/10.1063/1.3702790
27.
27. C. J. Regan, O. Thiabgoh, L. Grave de Peralta, and A. A. Bernussi, “ Probing photonic Bloch wavefunctions with plasmon-coupled leakage radiation,” Opt. Express 20, 8658 (2012).
http://dx.doi.org/10.1364/OE.20.008658
28.
28. Y. K. Chen, D. G. Zhang, X. X. Wang, C Liu, P. Wang, and H. Ming, “ Launching plasmonic Bloch waves with excited dye molecules,” Nanotechnology 23, 475202 (2012).
http://dx.doi.org/10.1088/0957-4484/23/47/475202
29.
29. R. Rodriguez, C. J. Regan, A. Ruiz-Columbié, W. Agutu, A. A. Bernussi, and L. Grave de Peralta, “ Study of plasmonic crystals using Fourier-plane images obtained with plasmon tomography far-field superlenses,” J. Appl. Phys. 110, 083109 (2011).
http://dx.doi.org/10.1063/1.3654001
30.
30. C. J. Regan, R. Rodriguez, S. Gourshetty, L. Grave de Peralta, and A. A. Bernussi, “ Imaging nanoscale features with plasmon-coupled leakage radiation far-field superlenses,” Opt. Express 20, 20827 (2012).
http://dx.doi.org/10.1364/OE.20.020827
31.
31. L. Grave de Peralta, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, “ Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys. 109, 023101 (2011).
http://dx.doi.org/10.1063/1.3533730
32.
32. A. Houk, R. Lopez-Boada, A. Ruiz-Columbie, S. Park, and A. A. Bernussi, and L. Grave de Peralta, “ Erratum: Some consequences of experiments with a plasmonic quantum eraser for plasmon tomography,” J. Appl. Phys. 109, 119901 (2011).
http://dx.doi.org/10.1063/1.3594740
33.
33. S. P. Frisbie, C. Chesnutt, J. Ajimo, A. A. Bernussi, and L. Grave de Peralta, “ Characterization of polarization states of surface plasmon polaritons modes by Fourier-plane leakage microscopy,” Opt. Commun. 283, 5255 (2010).
http://dx.doi.org/10.1016/j.optcom.2010.08.011
34.
34. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “ Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568 (2004).
http://dx.doi.org/10.1021/jp040221h
35.
35. M. Beck, “ Comparing measurements of g2(0) performed with different coincidence detection techniques,” J. Opt. Soc. Am. B 24, 2972 (2007).
http://dx.doi.org/10.1364/JOSAB.24.002972
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/7/10.1063/1.4792305
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the half-ball arrangement used to detect SPP-coupled leakage radiation in experiment with feeble light.

Image of FIG. 2.

Click to view

FIG. 2.

Picture taken at the FP of the lens arrangement with a bandpass filter in place. The yellow line traces the path of the linear actuator.

Image of FIG. 3.

Click to view

FIG. 3.

(a) FP profile of the detected plasmon-coupled leakage radiation at varying pump intensities (represented by different colors). (b) FP profile corresponding to the lowest pump intensity to produce resolvable SPP peaks.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Microscope image of the sample's scattering structure. (b) SE image showing SPPs, excited by 785 nm laser, propagating perpendicular to the scattering structure. (c) FP image with spatial filter showing the two characteristic SPP arcs produced exclusively by plasmon-coupled leakage radiation.

Image of FIG. 5.

Click to view

FIG. 5.

Schematic drawing of the experimental setup in experiments where single SPPs were excited using a true source of single photons. “A” and “B” are the detector names. The SPP tomography arrangement is placed in the section marked by the dashed box for the SPP measurement experiments, otherwise it is not needed.

Image of FIG. 6.

Click to view

FIG. 6.

Schematic of (a) two-detector and (b) three-detector HBT setup.

Image of FIG. 7.

Click to view

FIG. 7.

Camera pictures (a) without a spatial filter and (b) with a spatial filter, taken the FP of the high NA objective lens. (c) Live data from an SPCM detecting the radiation arriving at position “A” in the experimental setup shown in Fig. 5 . (I) the SPDC beam is focused on the scattering structure in the sample and a spatial filter is blocking the direct-excitation spot, (II) the SPDC beam is focused off the scattering structure and spatial filter is present, (III) the SPDC beam is focused off the scattering structure and the spatial filter is removed, and (IV) the SPDC beam is blocked.

Image of FIG. 8.

Click to view

FIG. 8.

Plot of the coincidence peak marking coincidences between the plasmon-coupled leakage radiation and the reference SPDC beam.

Loading

Article metrics loading...

/content/aip/journal/jap/113/7/10.1063/1.4792305
2013-02-15
2014-04-20

Abstract

We report the direct excitation and detection of single-photon surface plasmon polariton (SPP) using a SPP tomography arrangement. Temporally spaced photons produced by spontaneous parametric downconversion were used to excite single-photon SPPs. The quantum statistics of the leakage radiation was studied using a Hanbury-Brown & Twiss correlator arrangement. We observed a violation of the second order coherence test indicating leakage of temporally spaced photons. This demonstrates that leakage radiation associated with SPPs excited by single photons is composed of temporally spaced photons. Reaching the quantum regime of SPP tomography opens the door for further advances in SPP quantum state determination using SPP tomography.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/7/1.4792305.html;jsessionid=j8bd1jjgfus.x-aip-live-06?itemId=/content/aip/journal/jap/113/7/10.1063/1.4792305&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Toward surface plasmon polariton quantum-state tomography
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/7/10.1063/1.4792305
10.1063/1.4792305
SEARCH_EXPAND_ITEM