1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Achieving direct band gap in germanium through integration of Sn alloying and external strain
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/7/10.1063/1.4792649
1.
1. M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80(4 ), 2234 (1996).
http://dx.doi.org/10.1063/1.363052
2.
2. M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107, 013710 (2010).
http://dx.doi.org/10.1063/1.3279307
3.
3. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, and K. Saraswat, Opt. Express 19(27 ), 25866 (2011).
http://dx.doi.org/10.1364/OE.19.025866
4.
4. G. Capellini, G. Kozlowski, Y. Yamamoto, M. Lisker, C. Wenger, G. Niu, P. Zaumseil, B. Tillack, A. Ghrib, M. de Kersauson, M. El Kurdi, P. Boucaud, and T. Schroeder, J. Appl. Phys 113, 013513 (2013).
http://dx.doi.org/10.1063/1.4772781
5.
5. J. R. Jain, A. Hryciw, T. M. Baer, D. A. Miller, M. L. Brongersma, and R. T. Howe, Nature Photon. 6(6 ), 398 (2012).
http://dx.doi.org/10.1038/nphoton.2012.111
6.
6. Y. Huo, H. Lin, Y. Rong, M. Makarova, M. Li, R. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, in Proceedings of the IEEE International Conference on Group IV Photonics (San Francisco, CA, USA, 2009), pp. 265267.
7.
7. G. He and H. A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1937
8.
8. J. D. Sau and M. L. Cohen, Phys. Rev. B 75, 045208 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045208
9.
9. S. Gupta, R. Chen, B. Magyari-Köpe, H. Lin, B. Yang, A. Nainani, J. S. Harris, and K. C. Saraswat, in Proceedings of the IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineering Proceedings, 2011), p. 398.
10.
10. S. Gupta, B. Vincent, D. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, in Proceedings of the IEEE VLSI Technology Symposium (Institute of Electrical and Electronics Engineering Proceedings, 2012), p. 95.
11.
11. G. Han, S. Su, C. Zhan, Y. Yang, L. Wang, P. Guo, W. Wei, C. P. Wong, Z. X. Shen, B. Cheng, and Y.-C. Yeo, in Proceedings of the IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineering Proceedings, 2011), p. 402.
12.
12. D. W. Jenkins and J. D. Dow, Phys. Rev. B 36(15 ), 7994 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.7994
13.
13. P. Moontragoon, Z. Ikonić, and P. Harrison, Semicond. Sci. Technol. 22, 742 (2007).
http://dx.doi.org/10.1088/0268-1242/22/7/012
14.
14. W.-J. Yin, X.-G. Gong, and S.-H. Wei, Phys. Rev. B 78, 161203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.161203
15.
15. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, Appl. Phys. Lett. 99, 181125 (2011).
http://dx.doi.org/10.1063/1.3658632
16.
16. G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menendez, Appl. Phys. Lett. 101, 072105 (2012).
http://dx.doi.org/10.1063/1.4745770
17.
17. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14(2 ), 556, (1976).
http://dx.doi.org/10.1103/PhysRevB.14.556
18.
18. M. M. Rieger and P. Vogl, Phys. Rev. B 48, 14276 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14276
19.
19. P. Friedel, M. S. Hybertsen, and M. Schlüter, Phys. Rev. B 39, 7974 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.7974
20.
20. P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, and J. Kouvetakis, Appl. Phys. Lett. 84, 888 (2004).
http://dx.doi.org/10.1063/1.1645324
21.
21. A. Zunger and J. E. Jaffe, Phys. Rev. Lett. 51(8 ), 662 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.662
22.
22. M. Jaros, Rep. Prog. Phys. 48, 10911154 (1985).
http://dx.doi.org/10.1088/0034-4885/48/8/001
23.
23. G. Bohm and K. Unger, Phys. Status Solidi B 216, 961 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3951(199912)216:2<961::AID-PSSB961>3.0.CO;2-6
24.
24. A.-B. Chen and A. Sher, Semiconductor Alloys: Physics and Materials Engineering (Plenum, New York, 1995).
25.
25. S. J. Lee, T. S. Kwon, K. Nahm, and C. K. Kim, J. Phys. Condens. Matter 2, 3253 (1990).
http://dx.doi.org/10.1088/0953-8984/2/14/010
26.
26. J. P. Fleurial and A. Borshchevsky, J. Eletrochem. Soc. 137(9 ), 29282937 (1990).
http://dx.doi.org/10.1149/1.2087101
27.
27. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, Appl. Phys. Lett. 99, 152103 (2011).
http://dx.doi.org/10.1063/1.3645620
28.
28. H. Lin, R. Chen, Y. Huo, T. I. Kamins, and J. S. Harris, Thin Solid Films 520(11 ), 3927 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.01.047
29.
29. R. Chen, Y.-C. Huang, S. Gupta, A. C. Lin, E. Sanchez, Y. Kim, K. C. Saraswat, T. I. Kamins, and J. S. Harris, J. Cryst. Growth 365, 29 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.014
30.
30. Physics of Group IV Elements and III-V Compounds, edited by O. Madelung, M. Schultz, and H. Weiss (Springer-Verlag, New York, 1982), Vol. 17a.
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/7/10.1063/1.4792649
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Band structure of (a) Ge and (b) α-Sn calculated using the nonlocal empirical pseudopotential method.

Image of FIG. 2.

Click to view

FIG. 2.

Band gap at high symmetry points in the Brillouin zone for GeSn alloys calculated using the conventional VCA.

Image of FIG. 3.

Click to view

FIG. 3.

Dependence of the direct band gap bowing on the value of Ploc used in Eq. (6) .

Image of FIG. 4.

Click to view

FIG. 4.

(a) Band gap at high symmetry points in the Brillouin zone for GeSn alloys using VCA corrected for alloy compositional and structural disorder (modified VCA). (b) Comparison of the calculated direct gap with experimental data measured at 300 K as in Refs. 15 and 16 .

Image of FIG. 5.

Click to view

FIG. 5.

Calculated band structure for GeSn with (a) 5% Sn, (b) 15% Sn, and (c) 25% Sn.

Image of FIG. 6.

Click to view

FIG. 6.

Calculated electron and hole effective masses at Γ point as a function of Sn composition in GeSn.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Contour plot of lowest energy gap in GeSn and (b) ECL-E: Energy separation between the L and Γ conduction band minima as a function of in plane biaxial strain and alloy Sn composition for [001] stress. Band gap values in eV.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Lowest energy gap and (b) ECL-E: Energy separation between the L and Γ conduction band minima in Ge1-ySny grown pseudomorphically on (001) unstrained Ge1−xSnx. Band gap values in eV.

Tables

Generic image for table

Click to view

Table I.

Pseudopotential parameters used for Ge and Sn. Nonlocal parameters taken from Ref. 17 .

Loading

Article metrics loading...

/content/aip/journal/jap/113/7/10.1063/1.4792649
2013-02-19
2014-04-24

Abstract

GeSn is predicted to exhibit an indirect to direct band gap transition at alloy Sn composition of 6.5% and biaxial strain effects are investigated in order to further optimize GeSn band structure for optoelectronics and high speed electronic devices. A theoretical model has been developed based on the nonlocal empirical pseudopotential method to determine the electronic band structure of germanium tin (GeSn) alloys. Modifications to the virtual crystal potential accounting for disorder induced potential fluctuations are incorporated to reproduce the large direct band gap bowing observed in GeSn alloys.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/7/1.4792649.html;jsessionid=20ibt32ns2o4.x-aip-live-06?itemId=/content/aip/journal/jap/113/7/10.1063/1.4792649&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Achieving direct band gap in germanium through integration of Sn alloying and external strain
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/7/10.1063/1.4792649
10.1063/1.4792649
SEARCH_EXPAND_ITEM