1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/8/10.1063/1.4793273
1.
1. D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, Adv. Mater. 15, 1022 (2003);
http://dx.doi.org/10.1002/adma.200304899
1. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).
http://dx.doi.org/10.1002/adma.201103228
2.
2. G. Sberveglieri, Sens. Actuators, B 6, 239 (1992);
http://dx.doi.org/10.1016/0925-4005(92)80062-3
2. S. R. Davis, A. Wilson, and J. D. Wright, IEE Proc.: Circuits Devices Syst. 145, 379 (1998).
http://dx.doi.org/10.1049/ip-cds:19982236
3.
3. S. A. Campbell, D. C. Gilmore, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. Yan, IEEE Trans. Electron Devices 44, 104 (1997);
http://dx.doi.org/10.1109/16.554800
3. K. Kim, C. G. Hwang, and J. G. Lee, IEEE Trans. Electron Devices 45, 598 (1998).
http://dx.doi.org/10.1109/16.661221
4.
4. C. D. Canestraro, M. M. Oliveira, R. Valaski, M. V. S. da Silva, D. G. F. David, I. Pepe, A. F. da Silva, L. S. Roman, and C. Persson, Appl. Surf. Sci. 255, 1874 (2008);
http://dx.doi.org/10.1016/j.apsusc.2008.06.113
4. C. D. Canestraro, L. S. Roman, and C. Persson, Thin Solid Films 517, 6301 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.02.063
5.
5. C. Persson and S. Mirbt, Braz. J. Phys. 36, 286 (2006);
http://dx.doi.org/10.1590/S0103-97332006000300014
5. C. Persson and A. Ferreira da Silva, Appl. Phys. Lett. 86, 231912 (2005).
http://dx.doi.org/10.1063/1.1940739
6.
6. C. Persson and A. Zunger, Phys. Rev. B 68, 073205 (2003);
http://dx.doi.org/10.1103/PhysRevB.68.073205
6. F. Thomazi, L. S. Roman, A. F. Silva, and C. Persson, Phys. Status Solidi C 6, 2740 (2009).
http://dx.doi.org/10.1002/pssc.200982548
7.
7. C. L. Dong, C. Persson, L. Vayssieres, A. Augustsson, T. Schmitt, M. Mattesini, R. Ahuja, C. L. Chang, and J. H. Guo, Phys. Rev. B 70, 195325 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195325
8.
8. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003);
http://dx.doi.org/10.1063/1.1564060
8. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
9.
9. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999);
http://dx.doi.org/10.1103/PhysRevB.59.1758
9. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
10.
10. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.134106
11.
11. X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997);
http://dx.doi.org/10.1103/PhysRevB.55.10355
11. Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang, L. Q. Chen, and Z. K. Liu, J. Phys.: Condens. Matter 22, 202201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/20/202201
12.
12. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045112
13.
13. H. Kuzmany, Solid State Spectroscopy: A Introduction (Springer, Berlin, 2009), p. 117;
13. S. Meneses, J. F. Brun, P. Echegut, and P. Simon, Appl. Spectrosc. 58, 969 (2004), and the references therein.
http://dx.doi.org/10.1366/0003702041655467
14.
14. O. Madelung, Semiconductor Basic Data, 2nd revised ed. (Springer, Berlin, 1996), p201.
15.
15. J. Pascual, J. Camassel, and H. Mathieu, Phys. Rev. B 18, 5606 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.5606
16.
16. Y. Tezuka, S. Shin, T. Ishii, T. Ejima, S. Suzuki, and S. Sato, J. Phys. Soc. Jpn. 63, 347 (1994).
http://dx.doi.org/10.1143/JPSJ.63.347
17.
17. H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and E. Levy, J. Appl. Phys. 75, 2042 (1994).
http://dx.doi.org/10.1063/1.356306
18.
18. H. Tang, F. Levy, H. Berger, and P. E. Schmid, Phys. Rev. B 52, 7771 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.7771
19.
19. G. Sanon, R. Rup, and A. Mansingh, Phys. Status Solidi A 135, 581 (1993);
http://dx.doi.org/10.1002/pssa.v135:2
19. J. A. Marley and R. C. Dockerty, Phys. Rev. B 140, A304 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A304
20.
20. R. G. Berckenridge and W. R. Hosler, Phys. Rev. 91, 793 (1953).
http://dx.doi.org/10.1103/PhysRev.91.793
21.
21. M. Stamate, G. Lazar, and I. Lazar, Rom. J. Phys. 53, 217 (2008).
22.
22. L. Chiodo, J. M. García-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, Phys. Rev. B 82, 045207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045207
23.
23. J. Kang, S. Tsunekawa, and A. Kasuya, Appl. Surf. Sci. 174, 306 (2001);
http://dx.doi.org/10.1016/S0169-4332(01)00184-2
23. A. Amtout and R. Leonelli, Phys. Rev. B 51, 6842 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.6842
24.
24. Z. Wang, U. Helmersson, and P. O. Käll, Thin Solid Films 405, 50 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01767-9
25.
25. W. Kang and M. S. Hybertsen, Phys. Rev. B 82, 085203 (2010), and the references therein.
http://dx.doi.org/10.1103/PhysRevB.82.085203
26.
26. Collaboration: Authors and editors of the volumes III/17E-17F-41C, “ Tin dioxide (SnO2) optical properties, dielectric constants,” in Springer Materials-The Landolt-Börnstein Database, edited by O. Madelung, U. Rössler, and M. Schulz (Springer).
http://dx.doi.org/10.1007/10681727_775
27.
27. T. A. Darvis and K. Vedam, J. Opt. Soc. Am. 58, 1446 (1968).
http://dx.doi.org/10.1364/JOSA.58.001446
28.
28. P. A. Parker, Phys. Rev. 124, 1719 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1719
29.
29. R. J. Gonzalez, R. Zallen, and H. Berger, Phys. Rev. B 55, 7014 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.7014
30.
30. J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, Phys. Rev. B 3, 3457 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.3457
31.
31. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).
http://dx.doi.org/10.1002/jrs.1250070606
32.
32. R. S. Katiyar, P. Dawson, M. M. Hargreave, and G. R. Wilkinson, J. Phys. C 4, 2421 (1971).
http://dx.doi.org/10.1088/0022-3719/4/15/027
33.
33. D. M. Eagles, J. Phys. Chem. Solids 25, 1243 (1964).
http://dx.doi.org/10.1016/0022-3697(64)90022-8
34.
34. K. Hübwer, Phys. Status Solidi B 68, 223 (1975).
http://dx.doi.org/10.1002/pssb.2220680121
35.
35. P. Ghosez, J. P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.6224
36.
36. M. P. Marder, Condensed Matter Physics, 2nd revised ed. (Wiley, New Jersey, 2010), p. 671.
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/8/10.1063/1.4793273
Loading
/content/aip/journal/jap/113/8/10.1063/1.4793273
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/8/10.1063/1.4793273
2013-02-22
2015-03-31

Abstract

SnO2 and TiO2 polymorphs (rutile and anatase) are oxides with similar crystal structures, comparable bond lengths, and electronic band-gap energies, but different optical and electronic properties. In this work, we have studied the origin of these differences from the band-edge structures and electron-phonon coupling. The band-edge structures, dielectric functions, and effective masses were calculated by means of a first-principles approach with the exchange-correlation described by a hybrid functional. The phonon frequencies were calculated using a finite displacement method with non-analytic correction, and the phonon contribution to the dielectric functions was modeled using a multi-phonon Lorentz model. The calculated band-edge structures show that the bottommost conduction bands are highly dispersive for SnO2 polymorphs but flat dispersive for TiO2 polymorphs because of the strongly localized Ti-3d states. Consequently, SnO2 polymorphs present small effective electron masses and a weak optical absorption, whereas the TiO2 polymorphs present a strong optical absorption and larger effective electron masses. Due to the strong ionic bonds, TiO2 have larger Born effective charges than that of SnO2, result in stronger polaron effect and larger average static dielectric constant ε 0. For example, ε 0 = 115 for rutile TiO2 whereas ε 0 = 9.5 for rutile SnO2. Moreover, it is interesting to note that the ε 0 in rutile TiO2 is much larger than in anatase TiO2 (ε 0 = 28) although they have the same chemical compositions, which related to the local structure distortion of the phases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/8/1.4793273.html;jsessionid=aq55eujdrwi1.x-aip-live-02?itemId=/content/aip/journal/jap/113/8/10.1063/1.4793273&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/8/10.1063/1.4793273
10.1063/1.4793273
SEARCH_EXPAND_ITEM