1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/1/10.1063/1.4812383
1.
1. G. O. Jones and P. A. Thomas, Acta Crystallogr. B58, 168 (2002).
http://dx.doi.org/10.1107/S0108768101020845
2.
2. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008).
http://dx.doi.org/10.1021/cm8004634
3.
3. C. Ma and X. Tan, J. Am. Ceram. Soc. 94(11), 4040 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04670.x
4.
4. S. Gorfman and P. A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010).
http://dx.doi.org/10.1107/S002188981003342X
5.
5. E. Aksel, J. S. Forrester, J. L. Jones, P. A. Thomas, K. Page, and M. R. Suchomel, Appl. Phys. Lett. 98(15), 152901 (2011).
http://dx.doi.org/10.1063/1.3573826
6.
6. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., Part 1 30(9B), 2236 (1991).
http://dx.doi.org/10.1143/JJAP.30.2236
7.
7. C. W. Tai, S. H. Choy, and H. L. W. Chan, J. Am. Ceram. Soc. 91(10), 3335 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02592.x
8.
8. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. J. Kleebe, A. J. Bell, and J. Rödel, J. Appl. Phys. 110, 074106 (2011).
http://dx.doi.org/10.1063/1.3645054
9.
9. Y. Guo, M. Gu, H. Luo, Y. Liu, and R. L. Withers, Phys. Rev. B 83, 054118 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.054118
10.
10. C. Ma and X. Tan, Solid State Commun. 150, 1497 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.06.006
11.
11. C. Ma, X. Tan, E. Dul'kin, and M. Roth, J. Appl. Phys. 108, 104105 (2010).
http://dx.doi.org/10.1063/1.3514093
12.
12. D. Schütz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, and K. Reichmann, Adv. Funct. Mater. 22(11), 2285 (2012).
http://dx.doi.org/10.1002/adfm.201102758
13.
13. G. Picht, J. Töpfer, and E. Hennig, J. Eur. Ceram. Soc. 30, 3445 (2010).
http://dx.doi.org/10.1016/j.jeurceramsoc.2010.07.042
14.
14. J. E. Daniels, W. Jo, J. Rödel, V. Honkimaki, and J. L. Jones, Acta Mater. 58, 2103 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.11.052
15.
15. J. Kling, X. Tan, W. Jo, H. J. Kleebe, H. Fuess, and J. Rödel, J. Am. Ceram. Soc. 93(9), 2452 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03778.x
16.
16. L. A. Schmitt, J. Kling, M. Hinterstein, M. Hoelzel, W. Jo, H. J. Kleebe, and H. Fuess, J. Mater. Sci. 46, 4368 (2011).
http://dx.doi.org/10.1007/s10853-011-5427-6
17.
17. J. E. Daniels, W. Jo, J. Rödel, D. Rytz, and W. Donner, Appl. Phys. Lett. 98, 252904 (2011).
http://dx.doi.org/10.1063/1.3602316
18.
18. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rödel, J. Appl. Phys. 109, 014110 (2011).
http://dx.doi.org/10.1063/1.3530737
19.
19. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel, and M. Hoffman, Appl. Phys. Lett. 98, 082901 (2011).
http://dx.doi.org/10.1063/1.3557049
20.
20. G. Viola, H. Ning, M. J. Reece, R. Wilson, T. M. Correia, P. Weaver, M. Cain, and H. Yan, J. Phys. D 45, 355302 (2012).
http://dx.doi.org/10.1088/0022-3727/45/35/355302
21.
21. C. Xu, D. Lin, and K. W. Kwok, Solid State Sci. 10, 934 (2008).
http://dx.doi.org/10.1016/j.solidstatesciences.2007.11.003
22.
22. S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, and J. Rödel, J. Appl. Phys. 103, 034108 (2008).
http://dx.doi.org/10.1063/1.2838476
23.
23. S. T. Zhang, A. B. Kounga, E. Aulbach, and Y. Deng, J. Am. Ceram. Soc. 91(12), 3950 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02778.x
24.
24. W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic, J. Appl. Phys. 105, 094102 (2009).
http://dx.doi.org/10.1063/1.3121203
25.
25. K. T. P. Seifert, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 93(5), 1392 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03573.x
26.
26. A. Singh and R. Chatterjee, J. Appl. Phys. 109, 024105 (2011).
http://dx.doi.org/10.1063/1.3536634
27.
27. Y. Guo, Y. Liu, R. L. Withers, F. Brink, and H. Chen, Chem. Mater. 23, 219 (2011).
http://dx.doi.org/10.1021/cm102719k
28.
28. R. Dittmer, W. Jo, J. Rödel, S. Kalinin, and N. Balke, Adv. Funct. Mater. 22(20), 4208 (2012).
http://dx.doi.org/10.1002/adfm.201200592
29.
29. K. Wang, A. Hussain, W. Jo, and J. Rödel, J. Am. Ceram. Soc. 95(7), 2241 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2012.05162.x
30.
30. Z. Luo, T. Granzow, J. Glaum, W. Jo, J. Rödel, and M. Hoffman, J. Am. Ceram. Soc. 94(11), 3927 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04605.x
31.
31. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, and G. Wang, J. Am. Ceram. Soc. 94(12), 4382 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04731.x
32.
32. F. Gao, X. Dong, C. Mao, F. Cao, and G. Wang, J. Am. Ceram. Soc. 94(12), 4162 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04912.x
33.
33. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zhang, Z. Gao, and M. J. Reece, J. Adv. Dielectr. 1(1), 107 (2011).
http://dx.doi.org/10.1142/S2010135X11000148
34.
34. I. Levin, I. M. Reaney, E. M. Anton, W. Jo, J. Rödel, J. Pokorny, L. A. Schmitt, H. J. Kleebe, M. Hinterstein, and J. L. Jones, Phys. Rev. B 87, 024113 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.024113
35.
35. J. Petzelt, S. Kamba, J. Fabry, D. Noujni, V. Porokhonskyy, A. Pashkin, I. Franke, K. Roleder, J. Suchanicz, R. Klein, and G. E. Kugel, J. Phys.: Condens. Matter 16, 2719 (2004).
http://dx.doi.org/10.1088/0953-8984/16/15/022
36.
36. D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, Funct. Mater. Lett. 3(1), 5 (2010).
http://dx.doi.org/10.1142/S1793604710000919
37.
37. M. Abazari, A. Safari, S. S. N. Bharadwaja, and S. Trolier-McKinstry, Appl. Phys. Lett. 96, 082903 (2010).
http://dx.doi.org/10.1063/1.3309706
38.
38. L. Jin, “ Broadband dielectric response in hard and soft PZT: Understanding softening and hardening mechanisms,” Ph.D. thesis (École Polytechnique Fédérale de Lausanne, 2011).
39.
39. E. Buixaderas, D. Nuzhnyy, P. Vanek, I. Gragora, J. Petzelt, V. Porokhonskyy, L. Jin, and D. Damjanovic, Phase Transitions 83(10-11), 917 (2010).
http://dx.doi.org/10.1080/01411594.2010.509601
40.
40. I. Rychetsky, S. Kamba, V. Porokhonskyy, A. Pashkin, M. Savinov, V. Bovtun, J. Petzelt, M. Kosec, and M. Dressel, J. Phys.: Condens. Matter 15, 6017 (2003).
http://dx.doi.org/10.1088/0953-8984/15/35/310
41.
41. V. Bovtun, S. Kamba, S. Veliko, D. Nuzhnyy, J. Kroupa, M. Savinov, P. Vanek, J. Petzelt, J. Holc, M. Kosec, H. Amorin, and M. Alguero, Phys. Rev. B 79, 104111 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104111
42.
42. D. Damjanovic, Phys. Rev. B 55(2), R649 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R649
43.
43. G. Viola, D. Verbylo, N. Orlovskaya, and M. J. Reece, Mater. Sci. Technol. 25(11), 1312 (2009).
http://dx.doi.org/10.1179/026708309X12474766656218
44.
44. T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42(13), 8577 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.8577
45.
45. B. L. Cheng, M. Gabbay, M. Maglione, and G. Fantozzi, J. Electroceram. 10, 5 (2003).
http://dx.doi.org/10.1023/A:1024007407033
46.
46. J. O. Gentner, P. Gerthsen, N. A. Schmidt, and R. E. Send, J. Appl. Phys. 49(8), 4485 (1978).
http://dx.doi.org/10.1063/1.325453
47.
47. I. M. Reaney, J. Electroceram. 19, 3 (2007).
http://dx.doi.org/10.1007/s10832-007-9041-6
48.
48. R. Eitel and C. A. Randall, Phys. Rev. B 75, 094106 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094106
49.
49. U. Robels and G. Arlt, J. Appl. Phys. 73, 3454 (1993).
http://dx.doi.org/10.1063/1.352948
50.
50. V. S. Postnikov, V. S. Pavlov, and S. K. Turkov, J. Phys. Chem. Solids 31, 1785 (1970).
http://dx.doi.org/10.1016/0022-3697(70)90168-X
51.
51. D. O'Neill, R. M. Bowman, and J. M. Gregg, Appl. Phys. Lett. 77(10), 1520 (2000).
http://dx.doi.org/10.1063/1.1290691
52.
52. D. Damjanovic, M. D. Maeder, P. D. Martin, C. Voisard, and N. Setter, J. Appl. Phys. 90, 5708 (2001).
http://dx.doi.org/10.1063/1.1412272
53.
53. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, J. Phys.: Condens. Matter 12, 3267 (2000).
http://dx.doi.org/10.1088/0953-8984/12/14/305
54.
54. E. Aksel, J. S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, and J. L. Jones, Phys. Rev. B 85, 024121 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024121
55.
55. M. S. Zhang and J. F. Scott, Ferroelectr., Lett. Sect. 6, 147 (1986).
http://dx.doi.org/10.1080/07315178608200490
56.
56. J. D. Freire and R. S. Katiyar, Phys. Rev. B 37(4), 2074 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2074
57.
57. J. Kreisel, A. M. Glazer, P. Bouvier, and G. Lucazeau, Phys. Rev. B 63, 174106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.174106
58.
58. L. Luo, W. Ge, J. Li, D. Viehland, C. Farley, R. Bodnar, Q. Zhang, and H. Luo, J. Appl. Phys. 109, 113507 (2011).
http://dx.doi.org/10.1063/1.3587236
59.
59. R. Dittmer, W. Jo, E. Aulbach, T. Granzow, and J. Rödel, J. Appl. Phys. 112, 014101 (2012).
http://dx.doi.org/10.1063/1.4730600
60.
60. K. Chong, F. Guiu, and M. J. Reece, J. Appl. Phys. 103, 014101 (2008).
http://dx.doi.org/10.1063/1.2822179
61.
61. F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, and C. M. Leung, J. Am. Ceram. Soc. 95(6), 1955 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2012.05119.x
62.
62. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, and J. Rödel, Appl. Phys. Lett. 102, 192903 (2013).
http://dx.doi.org/10.1063/1.4805360
63.
63. D. Damjanovic, Appl. Phys. Lett. 97, 062906 (2010).
http://dx.doi.org/10.1063/1.3479479
64.
64. B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl, Phys. Rev. B 82, 104112 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.104112
65.
65. M. Hinterstein, M. Knapp, M. Hoelzel, W. Jo, A. Cervellino, H. Ehrenberg, and H. Fuess, J. Appl. Crystallogr. 43, 1314 (2010).
http://dx.doi.org/10.1107/S0021889810038264
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/1/10.1063/1.4812383
Loading
/content/aip/journal/jap/114/1/10.1063/1.4812383
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/1/10.1063/1.4812383
2013-07-02
2015-03-29

Abstract

In 0.95[0.94Bi Na TiO-0.06BaTiO]-0.05CaTiO ceramics, the temperature T (dielectric permittivity shoulder at about 125 °C) represents a transition between two different thermally activated dielectric relaxation processes. Below T, the approximately linear decrease of the permittivity with the logarithm of frequency was attributed to the presence of a dominant ferroelectric phase. Above T, the permittivity shows a more complicated dependence of the frequency and Raman modes indicate a sudden increase in the spatial disorder of the material, which is ascribed to the presence of a nonpolar phase and to a loss of interaction between polar regions. From 30 to 150 °C, an increase in the maximum polarization with increasing temperature was related to three possible mechanisms: polarization extension favoured by the simultaneous presence of polar and non-polar phases; the occurrence of electric field-induced transitions from weakly polar relaxor to ferroelectric polar phase; and the enhanced polarizability of the crystal structure induced by the weakening of the Bi-O bond with increasing temperature. The occurrence of different electric field induced polarization processes with increasing temperature is supported by the presence of additional current peaks in the current-electric field loops.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/1/1.4812383.html;jsessionid=1enf8645o2t3r.x-aip-live-03?itemId=/content/aip/journal/jap/114/1/10.1063/1.4812383&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/1/10.1063/1.4812383
10.1063/1.4812383
SEARCH_EXPAND_ITEM