Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. T. Elliott, N. T. Gordon, and A. M. White, Appl. Phys. Lett. 74, 2881 (1999).
2. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).
3. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, Berlin, 2005).
4. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, Opt. Eng. 50, 061002 (2011).
5. D. Rhinger, J. Electron. Mater. 40, 1815 (2011).
6. I. Vurgaftman, E. H. Aifer, C. L. Canedy, J. G. Tischler, J. R. Meyer, J. H. Warner, E. M. Jackson, G. Hildebrand, and G. J. Sullivan, Appl. Phys. Lett. 89, 121114 (2006).
7. D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Guapala, Appl. Phys. Lett. 95, 023508 (2009).
8. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007).
9. I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, Opt. Eng. 50, 061007 (2011).
10. J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, Appl. Phys. Lett. 86, 101102 (2005).
11. R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, J. Appl. Phys. 107, 054514 (2010).
12. Z. Tian, R. T. Hinkey, R. Q. Yang, J. F. Klem, and M. B. Johnson, J. Appl. Phys. 111, 024510 (2012).
13. J. Piotrowski and W. Gawron, Infrared Phys. Technol. 38, 63 (1997).
14. C. T. Elliott and A. M. White, U.S. patent 5,068,524 (1991).
15. J. Piotrowski, P. Brozozowski, and K. Jóźwikowski, J. Electron. Mater. 32, 672 (2003).
16. R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murray, H. Wu, and S. S. Pei, Appl. Phys. Lett. 71, 2409 (1997).
17. R. Q. Yang, Z. Tian, J. F. Klem, T. D. Mishima, M. B. Santos, and M. B. Johnson, Appl. Phys. Lett. 96, 063504 (2010).
18. J. H. Davies, P. Hyldgaard, S. Hershfield, and J. W. Wilkins, Phys. Rev. B 46, 9620 (1992).
19. Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
20. C. Koeniguer, G. Dubois, A. Gomez, and V. Berger, Phys. Rev. B 74, 235325 (2006).
21. A. Buffaz, A. Gomez, M. Carras, L. Donyennette, and V. Berger, Phys. Rev. B 81, 075304 (2010).
22. A. Delga, M. Carras, V. Trinité, V. Guériaux, L. Doyennette, A. Nedelcu, H. Schneider, and V. Berger, Phys. Rev. B 85, 245414 (2012).
23. W. Shockley, J. Appl. Phys. 9, 635 (1938).
24. S. Ramo, Proc. IRE 27, 584 (1939).
25. B. Pellegrini, Phys. Rev. B 34, 5921 (1986).
26. R. Landauer, Physica B 227, 156 (1996).
27. W. Schottky, Annalen der Physik. 362, 541 (1918).
28.If the barrier is thin enough or if the impurities are coupled strongly enough to form a conductive channel, the electrons may actually transmit through the barrier to the hole barrier of the next stage, rather than recombining in the valence band of electron barrier. This will lead to internal gain. The gain can lead to higher signal, but will also lead to higher thermal noise. In this work, we assume that the barriers are thick enough so that this does not occur.
29. C. Donolato, Appl. Phys. Lett. 46, 270 (1985).
30. C. Donolato, J. Appl. Phys. 66, 4524 (1989).
31. T. Markvart, IEEE Trans. Electron. Devices 43, 1034 (1996).
32. M. A. Green, J. Appl. Phys. 81, 268 (1997).
33. M. A. Green, Prog. Photovolt. Res. Appl. 17, 57 (2009).
34. J. Schwinger, L. L. Deraad, K. A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Westview Press, New York, 1998).
35. M. B. Reine, A. K. Sood, and T. J. Tredwell, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1981), Vol. 18, p. 201.
36.The thermal noise limit encompasses both Johnson and shot noise. In other cases, especially in the QWIP literature, this limit is referred to as the dark current noise limit. Physically, the meaning is the same.
37. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
38.In interband detectors, this noise reduction is not always observable in practice. This is due to a large onset of 1/f noise that can arise under reverse bias. The physical source of the 1/f noise is not well understood, but is believed to be closely correlated with the material and fabrication quality.
39. B. Satpati, J. B. Rodriguez, A. Trampert, E. Tournié, A. Joullié, and P. Christol, J. Cryst. Growth 301/302, 889 (2007).
40. Y. Livneh, P. C. Klipstein, O. Klin, N. Snapi, S. Grossman, A. Glozman, and E. Weiss, Phys. Rev. B 86, 235311 (2012).
41. R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleiβner, R. Scheibner, and J. Ziegler, Infrared Phys. Technol. 52, 344 (2009).
42. E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, C. L. Canedy, and E. M. Jackson, Appl. Phys. Lett. 89, 053519 (2006).
43. S. Mou, J. V. Li, and S. L. Chuang, J. Quantum Electron. 45, 737 (2009).
44. L. Höglund, A. Soibel, D. Z.-Y. Ting, A. Khoshakhlagh, C. J. Hill, and S. D. Gunapala, Proc. SPIE 8511, 851106 (2012).
45. B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wrabeck, Appl. Phys. Lett. 97, 251117 (2010).
46. P. Martyniuk, J. Wróbel, E. Plis, P. Madejczyk, W. Gawron, A. Kowalewski, S. Krishna, and A. Rogalski, Opt. Eng. 52, 061307 (2013).
47. W. Shockley and W. Read, Phys. Rev. 87, 835 (1952).
48. D. Donetsky, S. P. Svensson, L. E. Vorobjev, and G. Belenky, Appl. Phys. Lett. 95, 212104 (2009).
49. B. Laikhtman, J. Appl. Phys. 112, 093111 (2012).
50.To clear up some potential confusion, it should be noted that in the technical literature the term “Auger suppression” is used in reference to two completely separate types of detector designs. As stated in the text, it was originally used (and is often used in the MCT-detector literature) as a reference to photovoltaic detectors that utilized low-doped absorbers. In this case, suppression of Auger effects is achieved by reducing the number of free carriers in the absorber by reverse biasing the detector. It has also been suggested that an “Auger suppression” can be achieved specifically in detectors using T2SL absorbers using bandstructure engineering of the SL composition. In this case, the reduction of Auger effects is due to lower Auger coefficients, rather than lower carrier densities.
51. J. Piotrowski, Opto-Electron. Rev. 12, 111 (2004).
52. B. V. Olson, L. M. Murray, J. P. Prineas, M. E. Flatté, J. T. Olsberg, and T. F. Boggess, Appl. Phys. Lett. 102, 202101 (2013).
53.The principle in question is the fact that the amount of work needed to assemble a given system should be constant with time, assuming retardation effects are negligible. This is the starting point for proving Green's reciprocity theory as applied to electrostatics.

Data & Media loading...


Article metrics loading...



A theoretical framework for studying signal and noise in multiple-stage interband infrared photovoltaic devices is presented. The theory flows from a general picture of electrons transitioning between thermalized reservoirs. Making the assumption of bulk-like absorbers, we show how the standard semiconductor transport and recombination equations can be extended to the case of multiple-stage devices. The electronic noise arising from thermal fluctuations in the transition rates between reservoirs is derived using the Shockley-Ramo and Wiener-Khinchin theorems. This provides a unified noise treatment accounting for both the Johnson and shot noise. Using a Green's function formalism, we derive consistent analytic expressions for the quantum efficiency and thermal noise in terms of the design parameters and macroscopic material properties of the absorber. The theory is then used to quantify the potential performance improvement from the use of multiple stages. We show that multiple-stage detectors can achieve higher sensitivities for applications requiring a fast temporal response. This is shown by deriving an expression for the optimal number of stages in terms of the absorption coefficient and absorber thicknesses for a multiple-stage detector with short absorbers. The multiple-stage architecture may also be useful for improving the sensitivity of high operating temperature detectors in situations where the quantum efficiency is limited by a short diffusion length. The potential sensitivity improvement offered by a multiple-stage architecture can be judged from the product of the absorption coefficient, α, and diffusion length, , of the absorber material. For detector designs where the absorber lengths in each of the stages are equal, the multiple-stage architecture offers the potential for significant detectivity improvement when α ≤ 0.2. We also explore the potential of multiple-stage detectors with photocurrent-matched absorbers. In this architecture, the absorbers are designed to absorb and collect an equal number of carriers in each stage. It is shown that for zero-bias operation, this design has a higher ultimate detectivity than a single-absorber device. Such improvements in detectivity are significant for material with α ≤ 0.5. Using the results derived for general values of α, we offer an outlook for multiple-stage detectors that utilize InAs/GaSb superlattice absorbers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd