1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/10/10.1063/1.4820394
1.
1. C. T. Elliott, N. T. Gordon, and A. M. White, Appl. Phys. Lett. 74, 2881 (1999).
http://dx.doi.org/10.1063/1.124045
2.
2. A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).
http://dx.doi.org/10.1088/0034-4885/68/10/R01
3.
3. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors (Springer, Berlin, 2005).
4.
4. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, Opt. Eng. 50, 061002 (2011).
http://dx.doi.org/10.1117/1.3572149
5.
5. D. Rhinger, J. Electron. Mater. 40, 1815 (2011).
http://dx.doi.org/10.1007/s11664-011-1653-6
6.
6. I. Vurgaftman, E. H. Aifer, C. L. Canedy, J. G. Tischler, J. R. Meyer, J. H. Warner, E. M. Jackson, G. Hildebrand, and G. J. Sullivan, Appl. Phys. Lett. 89, 121114 (2006).
http://dx.doi.org/10.1063/1.2356697
7.
7. D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Guapala, Appl. Phys. Lett. 95, 023508 (2009).
http://dx.doi.org/10.1063/1.3177333
8.
8. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007).
http://dx.doi.org/10.1063/1.2800808
9.
9. I. Vurgaftman, C. L. Canedy, E. M. Jackson, J. A. Nolde, C. A. Affouda, E. H. Aifer, J. R. Meyer, A. Hood, A. J. Evans, and W. T. Tennant, Opt. Eng. 50, 061007 (2011).
http://dx.doi.org/10.1117/1.3578926
10.
10. J. V. Li, R. Q. Yang, C. J. Hill, and S. L. Chuang, Appl. Phys. Lett. 86, 101102 (2005).
http://dx.doi.org/10.1063/1.1875758
11.
11. R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, J. Appl. Phys. 107, 054514 (2010).
http://dx.doi.org/10.1063/1.3327415
12.
12. Z. Tian, R. T. Hinkey, R. Q. Yang, J. F. Klem, and M. B. Johnson, J. Appl. Phys. 111, 024510 (2012).
http://dx.doi.org/10.1063/1.3678003
13.
13. J. Piotrowski and W. Gawron, Infrared Phys. Technol. 38, 63 (1997).
http://dx.doi.org/10.1016/S1350-4495(96)00030-8
14.
14. C. T. Elliott and A. M. White, U.S. patent 5,068,524 (1991).
15.
15. J. Piotrowski, P. Brozozowski, and K. Jóźwikowski, J. Electron. Mater. 32, 672 (2003).
http://dx.doi.org/10.1007/s11664-003-0051-0
16.
16. R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murray, H. Wu, and S. S. Pei, Appl. Phys. Lett. 71, 2409 (1997).
http://dx.doi.org/10.1063/1.120076
17.
17. R. Q. Yang, Z. Tian, J. F. Klem, T. D. Mishima, M. B. Santos, and M. B. Johnson, Appl. Phys. Lett. 96, 063504 (2010).
http://dx.doi.org/10.1063/1.3313934
18.
18. J. H. Davies, P. Hyldgaard, S. Hershfield, and J. W. Wilkins, Phys. Rev. B 46, 9620 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.9620
19.
19. Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
20.
20. C. Koeniguer, G. Dubois, A. Gomez, and V. Berger, Phys. Rev. B 74, 235325 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.235325
21.
21. A. Buffaz, A. Gomez, M. Carras, L. Donyennette, and V. Berger, Phys. Rev. B 81, 075304 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075304
22.
22. A. Delga, M. Carras, V. Trinité, V. Guériaux, L. Doyennette, A. Nedelcu, H. Schneider, and V. Berger, Phys. Rev. B 85, 245414 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245414
23.
23. W. Shockley, J. Appl. Phys. 9, 635 (1938).
http://dx.doi.org/10.1063/1.1710367
24.
24. S. Ramo, Proc. IRE 27, 584 (1939).
http://dx.doi.org/10.1109/JRPROC.1939.228757
25.
25. B. Pellegrini, Phys. Rev. B 34, 5921 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5921
26.
26. R. Landauer, Physica B 227, 156 (1996).
http://dx.doi.org/10.1016/0921-4526(96)00387-0
27.
27. W. Schottky, Annalen der Physik. 362, 541 (1918).
http://dx.doi.org/10.1002/andp.19183622304
28.
28.If the barrier is thin enough or if the impurities are coupled strongly enough to form a conductive channel, the electrons may actually transmit through the barrier to the hole barrier of the next stage, rather than recombining in the valence band of electron barrier. This will lead to internal gain. The gain can lead to higher signal, but will also lead to higher thermal noise. In this work, we assume that the barriers are thick enough so that this does not occur.
29.
29. C. Donolato, Appl. Phys. Lett. 46, 270 (1985).
http://dx.doi.org/10.1063/1.95654
30.
30. C. Donolato, J. Appl. Phys. 66, 4524 (1989).
http://dx.doi.org/10.1063/1.343932
31.
31. T. Markvart, IEEE Trans. Electron. Devices 43, 1034 (1996).
http://dx.doi.org/10.1109/16.502143
32.
32. M. A. Green, J. Appl. Phys. 81, 268 (1997).
http://dx.doi.org/10.1063/1.364108
33.
33. M. A. Green, Prog. Photovolt. Res. Appl. 17, 57 (2009).
http://dx.doi.org/10.1002/pip.851
34.
34. J. Schwinger, L. L. Deraad, K. A. Milton, and W.-Y. Tsai, Classical Electrodynamics (Westview Press, New York, 1998).
35.
35. M. B. Reine, A. K. Sood, and T. J. Tredwell, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1981), Vol. 18, p. 201.
36.
36.The thermal noise limit encompasses both Johnson and shot noise. In other cases, especially in the QWIP literature, this limit is referred to as the dark current noise limit. Physically, the meaning is the same.
37.
37. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
38.
38.In interband detectors, this noise reduction is not always observable in practice. This is due to a large onset of 1/f noise that can arise under reverse bias. The physical source of the 1/f noise is not well understood, but is believed to be closely correlated with the material and fabrication quality.
39.
39. B. Satpati, J. B. Rodriguez, A. Trampert, E. Tournié, A. Joullié, and P. Christol, J. Cryst. Growth 301/302, 889 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.284
40.
40. Y. Livneh, P. C. Klipstein, O. Klin, N. Snapi, S. Grossman, A. Glozman, and E. Weiss, Phys. Rev. B 86, 235311 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235311
41.
41. R. Rehm, M. Walther, J. Schmitz, F. Rutz, J. Fleiβner, R. Scheibner, and J. Ziegler, Infrared Phys. Technol. 52, 344 (2009).
http://dx.doi.org/10.1016/j.infrared.2009.09.005
42.
42. E. H. Aifer, J. G. Tischler, J. H. Warner, I. Vurgaftman, W. W. Bewley, J. R. Meyer, C. L. Canedy, and E. M. Jackson, Appl. Phys. Lett. 89, 053519 (2006).
http://dx.doi.org/10.1063/1.2335509
43.
43. S. Mou, J. V. Li, and S. L. Chuang, J. Quantum Electron. 45, 737 (2009).
http://dx.doi.org/10.1109/JQE.2009.2013149
44.
44. L. Höglund, A. Soibel, D. Z.-Y. Ting, A. Khoshakhlagh, C. J. Hill, and S. D. Gunapala, Proc. SPIE 8511, 851106 (2012).
http://dx.doi.org/10.1117/12.930136
45.
45. B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wrabeck, Appl. Phys. Lett. 97, 251117 (2010).
http://dx.doi.org/10.1063/1.3529458
46.
46. P. Martyniuk, J. Wróbel, E. Plis, P. Madejczyk, W. Gawron, A. Kowalewski, S. Krishna, and A. Rogalski, Opt. Eng. 52, 061307 (2013).
http://dx.doi.org/10.1117/1.OE.52.6.061307
47.
47. W. Shockley and W. Read, Phys. Rev. 87, 835 (1952).
http://dx.doi.org/10.1103/PhysRev.87.835
48.
48. D. Donetsky, S. P. Svensson, L. E. Vorobjev, and G. Belenky, Appl. Phys. Lett. 95, 212104 (2009).
http://dx.doi.org/10.1063/1.3267103
49.
49. B. Laikhtman, J. Appl. Phys. 112, 093111 (2012).
http://dx.doi.org/10.1063/1.4765010
50.
50.To clear up some potential confusion, it should be noted that in the technical literature the term “Auger suppression” is used in reference to two completely separate types of detector designs. As stated in the text, it was originally used (and is often used in the MCT-detector literature) as a reference to photovoltaic detectors that utilized low-doped absorbers. In this case, suppression of Auger effects is achieved by reducing the number of free carriers in the absorber by reverse biasing the detector. It has also been suggested that an “Auger suppression” can be achieved specifically in detectors using T2SL absorbers using bandstructure engineering of the SL composition. In this case, the reduction of Auger effects is due to lower Auger coefficients, rather than lower carrier densities.
51.
51. J. Piotrowski, Opto-Electron. Rev. 12, 111 (2004).
52.
52. B. V. Olson, L. M. Murray, J. P. Prineas, M. E. Flatté, J. T. Olsberg, and T. F. Boggess, Appl. Phys. Lett. 102, 202101 (2013).
http://dx.doi.org/10.1063/1.4807433
53.
53.The principle in question is the fact that the amount of work needed to assemble a given system should be constant with time, assuming retardation effects are negligible. This is the starting point for proving Green's reciprocity theory as applied to electrostatics.
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/10/10.1063/1.4820394
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of an arbitrary semiconductor device where electron transport can be modeled as thermalized reservoirs exchanging electrons.

Image of FIG. 2.

Click to view

FIG. 2.

A general schematic for a multiple-stage interband photovoltaic detector under reverse-bias is shown in (a). The spatial variation of the chemical potentials, , of each of the reservoirs is shown for the case of (dotted lines) and  = 3 (solid lines). The band diagram in (b) shows how such a structure (under reverse-bias) is realized with materials from the 6.1 Å family of materials. The blue and red rectangles in the absorber represent the electron and hole minibands. The ground state energy levels and calculated wavefunctions for the QWs of the barrier regions are shown in blue for electrons states and in red for hole states.

Image of FIG. 3.

Click to view

FIG. 3.

Theoretical evaluation of single-absorber photovoltaic detector performance as a function of the parameter of absorber material. (a) The variation of the optimal choice for the absorber thickness in units of for both light incident on the absorber from the collection point (solid line) and light incident opposite the minority carrier collection point (dotted line). (b) The variation of the detectivity of an optimized single-absorber detector employing the absorber thickness from (a) (normalized to the detectivity evaluated in the → ∞ limit) under both illumination conditions and the corresponding external quantum efficiency.

Image of FIG. 4.

Click to view

FIG. 4.

Theoretical detectivity enhancement for multiple-stage ICIPs with identical stages operating in the thermal noise limit as a function of the product of the absorber material. The values were obtained by finding the optimal single-absorber and ICIP detector designs using numerical optimization. The values are shown both for when light is incident on the absorber from the absorber's collection point and when it is incident opposite to the collection point. The enhancement factors obtained from numerical optimization were compared with the analytic approximation for this factor given in Eq. (42) from the text. For the numerical results, the maximum number of stages was set to be 50.

Image of FIG. 5.

Click to view

FIG. 5.

Theoretical zero-bias detectivity enhancement for 2-stage, 11-stage, and 30-stage photocurrent-matched multiple-stage interband detectors operating the thermal noise limit. For a given number of stages, the optimal photocurrent-matched detector was optimized by finding the sequence of absorber lengths that maximized the value of .

Image of FIG. 6.

Click to view

FIG. 6.

Spatial dependence of Green's function and carrier collection probability across the absorber for the cases of  = 0 and  = ∞. The absorber length was set equal to the minority carrier diffusion length.

Loading

Article metrics loading...

/content/aip/journal/jap/114/10/10.1063/1.4820394
2013-09-12
2014-04-19

Abstract

A theoretical framework for studying signal and noise in multiple-stage interband infrared photovoltaic devices is presented. The theory flows from a general picture of electrons transitioning between thermalized reservoirs. Making the assumption of bulk-like absorbers, we show how the standard semiconductor transport and recombination equations can be extended to the case of multiple-stage devices. The electronic noise arising from thermal fluctuations in the transition rates between reservoirs is derived using the Shockley-Ramo and Wiener-Khinchin theorems. This provides a unified noise treatment accounting for both the Johnson and shot noise. Using a Green's function formalism, we derive consistent analytic expressions for the quantum efficiency and thermal noise in terms of the design parameters and macroscopic material properties of the absorber. The theory is then used to quantify the potential performance improvement from the use of multiple stages. We show that multiple-stage detectors can achieve higher sensitivities for applications requiring a fast temporal response. This is shown by deriving an expression for the optimal number of stages in terms of the absorption coefficient and absorber thicknesses for a multiple-stage detector with short absorbers. The multiple-stage architecture may also be useful for improving the sensitivity of high operating temperature detectors in situations where the quantum efficiency is limited by a short diffusion length. The potential sensitivity improvement offered by a multiple-stage architecture can be judged from the product of the absorption coefficient, α, and diffusion length, , of the absorber material. For detector designs where the absorber lengths in each of the stages are equal, the multiple-stage architecture offers the potential for significant detectivity improvement when α ≤ 0.2. We also explore the potential of multiple-stage detectors with photocurrent-matched absorbers. In this architecture, the absorbers are designed to absorb and collect an equal number of carriers in each stage. It is shown that for zero-bias operation, this design has a higher ultimate detectivity than a single-absorber device. Such improvements in detectivity are significant for material with α ≤ 0.5. Using the results derived for general values of α, we offer an outlook for multiple-stage detectors that utilize InAs/GaSb superlattice absorbers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/10/1.4820394.html;jsessionid=16t1voc1pshqg.x-aip-live-03?itemId=/content/aip/journal/jap/114/10/10.1063/1.4820394&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/10/10.1063/1.4820394
10.1063/1.4820394
SEARCH_EXPAND_ITEM