Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/11/10.1063/1.4821884
1.
1. L. Malavasi, C. Tealdi, G. Flor, G. Chiodelli, V. Cervetto, A. Montenero, and M. Borell, Sens. Actuators B 105, 407 (2005).
http://dx.doi.org/10.1016/j.snb.2004.06.029
2.
2. H. Hashimoto, T. Kusunose, and T. Sekino, J. Alloys Compd. 484, 246 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.04.100
3.
3. M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C. T. Chen, R. Potze, G. A. Sawatzky, H. Eisaki, and S. Uchida, Phys. Rev. B 47, 16124 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16124
4.
4. T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 55, 4257 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4257
5.
5. V. M. Goldschmidt, T. F. W. Barth, G. Lunde, and W. Zachariasen, “ Geochemische Verteilungsgesetze der Elemente – VII. Die Gesetze der Krystallochemie,” Skr. Nor. Vidensk.-Akad., [Kl.] I. Mat.-Naturvidensk. Kl; Oslo 2, 1117 (1926).
6.
6. J. S. Zhou, J. Q. Yan, and J. B. Goodenough, Phys. Rev. B 71, 220103 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.220103
7.
7. R. Heikes, R. C. Miller, and R. Mazelsky, Physica 30, 1600 (1964).
http://dx.doi.org/10.1016/0031-8914(64)90182-X
8.
8. M. A. Korotin, S. Y. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatsky, Phys. Rev. B 54, 5309 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.5309
9.
9. K. Asai, A. Yoneda, O. Yokokura, J. M. Tranquada, G. Shirane, and K. Kohn, J. Phys. Soc. Jpn. 67, 290 (1998).
http://dx.doi.org/10.1143/JPSJ.67.290
10.
10. K. Muta, Y. Kobayashi, and K. Asai, J. Phys. Soc. Jpn. 71, 2784 (2002).
http://dx.doi.org/10.1143/JPSJ.71.2784
11.
11. T. W. Huang, Y. S. Chang, G. L. Chen, and Y. H. Chang, J. Alloys Compd. 430, 205 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.04.064
12.
12. T. Takami, J. S. Zhou, J. B. Goodenough, and H. Ikuta, Phys. Rev. B 76, 144116 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144116
13.
13. J. J. Perez Cacho, J. Blasco, J. Garcia, and R. Sanchez, J. Solid State Chem. 150, 145 (2000).
http://dx.doi.org/10.1006/jssc.1999.8570
14.
14. K. Asai, O. Yokokura, M. Suzuki, T. Naka, T. Matsumoto, H. Takahashi, N. Môri, and K. Kohn, J. Phys. Soc. Jpn. 66, 967 (1997).
http://dx.doi.org/10.1143/JPSJ.66.967
15.
15. J. Q. Yan, J. S. Zhou, and J. B. Goodenough, Phys. Rev. B 69, 1344091 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.134409
16.
16. J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B 71, 014443 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014443
17.
17. M. Itoh and J. Hashimoto, Physica C 341–348, 2141 (2000).
http://dx.doi.org/10.1016/S0921-4534(00)01082-0
18.
18. P. M. Raccah and J. B. Goodenough, Phys. Rev. 155, 932 (1967).
http://dx.doi.org/10.1103/PhysRev.155.932
19.
19. S. Yamaguchi, Y. Okimoto, and Y. Tokura, Phys. Rev. B 54, R11022 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R11022
20.
20. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, Part 1, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed. (Wiley, 2009), p. 221.
21.
21. G. Xiong, Z. L. Zhi, X. Yang, L. Lu, and X. Wang, J. Mater. Sci. Lett. 16, 1064 (1997).
http://dx.doi.org/10.1023/A:1018586927079
22.
22. F. Capon, P. Laffez, J. F. Bardeau, P. Simon, P. Lacorre, and M. Zaghrioui, Appl. Phys. Lett. 81, 619 (2002).
http://dx.doi.org/10.1063/1.1493645
23.
23. M. Grecea, C. Rotaru, N. Nastase, and G. Graciun, J. Mol. Struct. 480–481, 607 (1999).
http://dx.doi.org/10.1016/S0022-2860(99)00017-4
24.
24. J. F. DeNatale and P. H. Kobrin, Mater. Res. Soc. Symp. Proc. 479, 145 (1997).
http://dx.doi.org/10.1557/PROC-479-145
25.
25. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
26.
26. D. D. Sarma, N. Shanthi, S. R. Barman, N. Hamada, H. Sawada, and K. Terakura, Phys. Rev. Lett. 75, 1126 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1126
27.
27. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and C. Niedermayer, Phys. Rev. B 45, 8209 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8209
28.
28. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.418
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/11/10.1063/1.4821884
Loading
/content/aip/journal/jap/114/11/10.1063/1.4821884
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/11/10.1063/1.4821884
2013-09-20
2016-12-10

Abstract

CoO (: rare earth) perovskite thin films have been deposited at room temperature by direct current co-sputtering and subsequent annealing in air at 923 K during 1 day. The effect of the octahedra tilts on the optical properties has been tracked decreasing the cation size. The bending and stretching vibrational modes of the CoO octahedra give information on the Co–O distances and the Co–O–Co angles which determine the Co–O overlap integral and hence the electric properties of these perovskites. Transmittance measurements in the 1.42–100 m wavelength range show a high transparency at room temperature. When temperature increases, an optical screening effect depending on the 3+ ionic radii (i.e., Co-O-Co angles) and resulting from the electrical behaviour occurs. At the wavelength of 8 m, the transmittance drops from about 90% at room temperature to 50% at the temperature of 516, 600, and 640 K for LaCoO, NdCoO, and SmCoO, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/11/1.4821884.html;jsessionid=z0wKTwRdD3moCvPmaNpBVG6h.x-aip-live-06?itemId=/content/aip/journal/jap/114/11/10.1063/1.4821884&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/11/10.1063/1.4821884&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/11/10.1063/1.4821884'
Right1,Right2,Right3,