Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/13/10.1063/1.4823984
1.
1. E. L. Dreizin, Combust. Flame 105, 541 (1996).
http://dx.doi.org/10.1016/0010-2180(95)00224-3
2.
2. J. L. Jordan, L. Ferranti, R. A. Austin, R. D. Dick, J. R. Foley, N. N. Thadhani, D. L. McDowell, and D. J. Benson, J. Appl. Phys. 101, 093520 (2007).
http://dx.doi.org/10.1063/1.2719272
3.
3. K. Brandstadt, D. L. Frost, and J. A. Kozinski, Proc. Combust. Inst. 32, 1913 (2009).
http://dx.doi.org/10.1016/j.proci.2008.08.014
4.
4. A. Ermoline, M. Schoenitz, and E. L. Dreizin, Combust. Flame 158, 1076 (2011).
http://dx.doi.org/10.1016/j.combustflame.2010.10.010
5.
5. M. A. Trunov, M. Schoenitz, X. Y. Zhu, and E. L. Dreizin, Combust. Flame 140, 310 (2005).
http://dx.doi.org/10.1016/j.combustflame.2004.10.010
6.
6. V. I. Levitas, Combust. Flame 156, 543 (2009).
http://dx.doi.org/10.1016/j.combustflame.2008.11.006
7.
7. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, and G. A. Shafeev, Opt. Express 17, 12650 (2009).
http://dx.doi.org/10.1364/OE.17.012650
8.
8. B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, J. Appl. Phys. 98, 064903 (2005).
http://dx.doi.org/10.1063/1.2058175
9.
9. Z. X. Yan, J. H. Wu, S. Ye, D. Hu, and X. D. Yang, J. Appl. Phys. 101, 024905 (2007).
http://dx.doi.org/10.1063/1.2425002
10.
10. S. F. Wang, Y. Q. Yang, H. N. Yu, and D. D. Dlott, Propellants, Explos., Pyrotech. 30, 148 (2005).
http://dx.doi.org/10.1002/prep.200400097
11.
11. M. Jones, C. H. Li, A. Afjeh, and G. P. Peterson, Nanoscale Res. Lett. 6, 246 (2011).
http://dx.doi.org/10.1186/1556-276X-6-246
12.
12. J. Gesner, M. L. Pantoya, and V. I. Levitas, Combust. Flame 159, 3448 (2012).
http://dx.doi.org/10.1016/j.combustflame.2012.06.002
13.
13. D. A. Firmansyah, K. Sullivan, K. S. Lee, Y. H. Kim, R. Zahaf, M. R. Zachariah, and D. Lee, J. Phys. Chem. C 116, 404 (2012).
http://dx.doi.org/10.1021/jp2095483
14.
14. R. W. Conner and D. D. Dlott, J. Phys. Chem. C 116, 2751 (2012).
http://dx.doi.org/10.1021/jp209912t
15.
15. W. K. Lewis, C. G. Rumchik, M. J. Smith, K. A. S. Fernando, C. A. Crouse, J. E. Spowart, E. A. Guliants, and C. E. Bunker, J. Appl. Phys. 113, 044907 (2013).
http://dx.doi.org/10.1063/1.4790159
16.
16. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Proc. Combust. Inst. 31, 2001 (2007).
17.
17. Y. S. Kwon, A. A. Gromov, A. P. Ilyin, E. M. Popenko, and G. H. Rim, Combust. Flame 133, 385 (2003).
http://dx.doi.org/10.1016/S0010-2180(03)00024-5
18.
18. V. I. Levitas, B. W. Asay, S. F. Son, and M. Pantoya, Appl. Phys. Lett. 89, 071909 (2006).
http://dx.doi.org/10.1063/1.2335362
19.
19. B. Dikici, S. W. Dean, M. L. Pantoya, V. I. Levitas, and R. J. Jouet, Energy Fuels 23, 4231 (2009).
http://dx.doi.org/10.1021/ef801116x
20.
20. L. T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A. B. Vorozhtsov, V. S. Sedoi, and V. A. Babuk, Combust., Explos. Shock Waves 41, 680 (2005).
http://dx.doi.org/10.1007/s10573-005-0080-5
21.
21. K. Jayaraman, K. V. Anand, D. S. Bhatt, S. R. Chakravarthy, and R. Sarathi, J. Propul. Power 25, 471 (2009).
http://dx.doi.org/10.2514/1.36490
22.
22. Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, Combust. Flame 156, 5 (2009).
http://dx.doi.org/10.1016/j.combustflame.2008.07.018
23.
23. A. B. Morgan, J. D. Wolf, E. A. Guliants, K. A. S. Fernando, and W. K. Lewis, Thermochim. Acta 488, 1 (2009).
http://dx.doi.org/10.1016/j.tca.2009.01.016
24.
24. A. N. Pivkina, Y. V. Frolov, and D. A. Ivanov, Combust., Explos. Shock Waves 43, 51 (2007).
http://dx.doi.org/10.1007/s10573-007-0008-3
25.
25. K. Moore, M. L. Pantoya, and S. F. Son, J. Propul. Power 23, 181 (2007).
http://dx.doi.org/10.2514/1.20754
26.
26. Z. X. Yan, J. Deng, and Z. M. Luo, Mater. Charact. 61, 198 (2010).
http://dx.doi.org/10.1016/j.matchar.2009.11.010
27.
27. T. Bazyn, P. Lynch, H. Krier, and N. Glumac, Propellants, Explos., Pyrotech. 35, 93 (2010).
http://dx.doi.org/10.1002/prep.200900016
28.
28. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, J. Phys. Chem. B 109, 7290 (2005).
http://dx.doi.org/10.1021/jp048041v
29.
29. S. W. Chung, E. A. Guliants, C. E. Bunker, P. A. Jelliss, and S. W. Buckner, J. Phys. Chem. Solids 72, 719 (2011).
http://dx.doi.org/10.1016/j.jpcs.2011.02.021
30.
30. Y. A. Gan and L. Qiao, Combust. Flame 158, 354 (2011).
http://dx.doi.org/10.1016/j.combustflame.2010.09.005
31.
31. R. A. Yetter, G. A. Risha, and S. F. Son, Proc. Combust. Inst. 32, 1819 (2009).
http://dx.doi.org/10.1016/j.proci.2008.08.013
32.
32. T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, Phys. Rev. Lett. 82, 4866 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4866
33.
33. T. J. Campbell, G. Aral, S. Ogata, R. K. Kalia, A. Nakano, and P. Vashishta, Phys. Rev. B 71, 205413 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205413
34.
34. S. Alavi, J. W. Mintmire, and D. L. Thompson, J. Phys. Chem. B 109, 209 (2005).
http://dx.doi.org/10.1021/jp046196x
35.
35. F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, 11996 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.11996
36.
36. D. J. Keffer and J. W. Mintmire, Int. J. Quantum Chem. 80, 733 (2000).
http://dx.doi.org/10.1002/1097-461X(2000)80:4/5<733::AID-QUA23>3.0.CO;2-Q
37.
37. P. Puri and V. Yang, J. Nanopart. Res. 12, 2989 (2010).
http://dx.doi.org/10.1007/s11051-010-9889-2
38.
38. A. Perron, S. Garruchet, O. Politano, G. Aral, and V. Vignal, J. Phys. Chem. Solids 71, 119 (2010).
http://dx.doi.org/10.1016/j.jpcs.2009.09.008
39.
39. G. Gutierrez, A. Taga, and B. Johansson, Phys. Rev. B 65, 012101 (2002).
http://dx.doi.org/10.1103%2FPhysRevB.65.012101
40.
40. G. Gutierrez and B. Johansson, Phys. Rev. B 65, 104202 (2002).
http://dx.doi.org/10.1103%2FPhysRevB.65.104202
41.
41. P. Vashishta, R. K. Kalia, A. Nakano, and J. P. Rino, J. Appl. Phys. 103, 083504 (2008).
http://dx.doi.org/10.1063%2F1.2901171
42.
42. S. P. Chen, A. F. Voter, and D. J. Srolovitz, J. Phys. 49, 157 (1988).
43.
43. W. Q. Wang, R. Clark, A. Nakano, R. K. Kalia, and P. Vashishta, Appl. Phys. Lett. 95, 261901 (2009).
http://dx.doi.org/10.1063%2F1.3268436
44.
44. W. Q. Wang, R. Clark, A. Nakano, R. K. Kalia, and P. Vashishta, Appl. Phys. Lett. 96, 181906 (2010).
http://dx.doi.org/10.1063%2F1.3425888
45.
45. A. Shekhar, W. Q. Wang, R. Clark, R. K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 102, 221904 (2013).
http://dx.doi.org/10.1063%2F1.4809600
46.
46. W. Wang, “Thermal properties of silicon carbide and combustion mechanisms of aluminum nanoparticle,” Department of Materials Science, University of Southern California, 2008.
47.
47. A. Hasnaoui, O. Politano, J. M. Salazar, G. Aral, R. K. Kalia, A. Nakano, and P. Vashishta, Surf. Sci. 579, 47 (2005).
http://dx.doi.org/10.1016/j.susc.2005.01.043
48.
48. T. N. Piehler, F. C. DeLucia, C. A. Munson, B. E. Homan, A. W. Miziolek, and K. L. McNesby, Appl. Opt. 44, 3654 (2005).
http://dx.doi.org/10.1364/AO.44.003654
49.
49. S. F. Wang, Y. Q. Yang, Z. Y. Sun, and D. D. Dlott, Chem. Phys. Lett. 368, 189 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01846-8
50.
50. G. I. Pangilinan and T. P. Russell, J. Chem. Phys. 111, 445 (1999).
http://dx.doi.org/10.1063/1.479322
51.
51. J. L. Prentice, J. Electrochem. Soc. 122, 260 (1975).
http://dx.doi.org/10.1149/1.2134192
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/13/10.1063/1.4823984
Loading
/content/aip/journal/jap/114/13/10.1063/1.4823984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/13/10.1063/1.4823984
2013-10-04
2016-12-09

Abstract

The size effect in the oxidation of aluminum nanoparticles (Al-NPs) has been observed experimentally; however, the mechano-chemistry and the atomistic mechanism of the oxidation dynamics remain elusive. We have performed multimillion atom reactive molecular dynamics simulations to investigate the oxidation dynamics of Al-NPs (diameters,  = 26, 36, and 46 nm) with the same shell thickness (3 nm). Analysis of alumina shell structure reveals that the shell of Al-NPs does not break or shatter, but only deforms during the oxidation process. The deformation depends slightly on the size of Al-NP. This reaction from the oxidation heats the Al-NP to a temperature of > 5000 K. Ejection of Al atoms from shell starts earlier in small Al-NPs—at  = 0.18, 0.28 and 0.42 ns for  = 26, 36 and 46 nm, when they all have the same shell temperature of 2900 K. As the oxidation dynamics proceeds, the total system temperature (including the environmental oxygen) increases monotonically; however, the time derivative of the total temperature, ( /), reaches a maximum at  = 0.20, 0.32 and 0.51 ns for  = 26, 36 and 46 nm. At this peak value of ( /), the shell temperature for the three Al-NPs are 3100 K, 3300 K, and 3500 K, respectively. The time lag between and is 0.02, 0.04 and 0.09 ns for  = 26, 36 and 46 nm clearly indicates the size effect.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/13/1.4823984.html;jsessionid=4Rau-NpFIWfKMB9fZcSPGiWW.x-aip-live-03?itemId=/content/aip/journal/jap/114/13/10.1063/1.4823984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/13/10.1063/1.4823984&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/13/10.1063/1.4823984'
Right1,Right2,Right3,