Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. K. Singh, S. Cochrane, W. T. Liu, D. B. Knorr, J. M. Borrego, E. J. Rymaszewski, and T. M. Lu, Appl. Phys. Lett. 66, 3683 (1995).
2. A. Kingon, Nature 401, 658 (1999).
3. J. Wang, B. Xu, G. Liu, J. Zhang, and T. Zhang, Sens. Actuators B 66, 159 (2000).
4. P. Wang, C. Fan, Y. Wang, G. Ding, and P. Yuan, Mater. Res. Bull. 48, 869 (2013).
5. Y. Xu and J. D. Mackenzie, J. Non-Cryst. Solids 246, 136 (1999).
6. M. L. Moreria, M. F. C. Gurgel, G. P. Mambrini, E. R. Leite, P. S. Pizani, J. A. Varela, and E. Longo, J. Phys. Chem. A 112, 8938 (2008).
7. M. L. Moreria, G. P. Mambrini, D. P. Volatini, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, and J. A. Varela, Chem. Mater. 20, 5381 (2008).
8. S. Wada, S. Kondo, C. Moriyoshi, and Y. Kuroiwa, Jpn. J. Appl. Phys. 47, 7612 (2008).
9. J. J. Urban, W. S. Yun, Q. Gu, and H. Park, J. Am. Chem. Soc. 124, 1186 (2002).
10. P. D. Yang and C. M. Lieber, Science 273, 1836 (1996).
11. S. S. Wong, E. Joselevich, A. T. Wooley, C. L. Cheung, and C. M. Lieber, Nature 394, 52 (1998).
12. P. M. Ajayan and J. M. Tour, Nature 447, 1066 (2007).
13. Y. Hu, H. Gu, X. Sun, J. You, and J. Wang, Appl. Phys. Lett. 88, 193120 (2006).
14. J. Yuh, L. Perez, W. M. Sigmund, and J. C. Nino, J. Sol-Gel Sci. Tech. 42, 323 (2007).
15. P. Raghavan, X. Zhao, J.-K. Kim, J. Manuel, G. S. Chauhan, J.-H. Ahn, and C. Nah, Electrochimica Acta 54, 228 (2008).
16. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, Sens. Actuators B 146, 98 (2010).
17. P. S. Pizani, E. R. Leite, F. M. Pontes, E. C. Paris, J. H. Rangel, E. J. H. Lee, E. Longo, P. Delega, and J. A. Varela, Appl. Phys. Lett. 77, 824 (2000).
18. L. Liu, T. Ning, Y. Ren, Z. Sun, F. Wang, W. Zhou, S. Xie, L. Song, S. Luo, D. Liu, J. Shen, W. Ma, and Y. Zhou, Mater. Sci. Eng. B 149, 41 (2008).
19. K. K. Rao, T. Banu, M. Vithal, G. Y. S. K. Swamy, and K. R. Kumar, Mater. Lett. 54, 205 (2002).
20. J. Y. Li, H. Dai, X. H. Zhong, Y. F. Zhang, and X. Q. Cao, Adv. Eng. Mater. 9, 205 (2007).
21. Y. Ma, E. Vileno, S. L. Suib, and P. K. Dutta, Chem. Mater. 9, 3023 (1997).
22. G. Busca, V. Buscglia, M. Leoni, and P. Nanni, Chem. Mater. 6, 955 (1994).
23. U. D. Venkateswaran, V. M. Naik, and R. Naik, Phys. Rev. B. 58, 14256 (1998).
24. Y. Shiratori, C. Pithan, J. Dornseiffer, and R. Waser, J. Raman Spectrosc. 38, 1288 (2007).
25. W. S. Cho, E. Hamada, and K. Takayanagi, J. Appl. Phys. 81, 3000 (1997).
26. M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, and S. Wada, J. Appl. Phys. 98, 014313 (2005).
27. H. Jena, V. K. Mittal, S. Bera, S. V. Narasimha, K. V. G. Kutty, and T. R. N. Kutty, Appl. Surf. Sci. 254, 7074 (2008).
28. S. Kumar, V. S. Raju, and T. R. N. Kutty, Appl. Surf. Sci. 206, 250 (2003).
29. S. A. Nasser, Appl. Surf. Sci. 157, 14 (2000).
30. Z. H. Yao, H. X. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, and M. Cao, Mater. Chem. Phys. 109, 475 (2008).
31. Z. Tang, Z. Zhou, and Z. Zhang, Sens. Actuators B 93, 391 (2003).
32. W. S. Cho and E. Hamada, J. Alloys Compd. 268, 78 (1998).
33. F. M. Pontes, C. D. Pinheiro, E. Longo, E. R. Leite, S. R. de Lazaro, R. Magnani, P. S. Pizani, T. M. Boschi, and F. Lanciotti, J. Lumin. 104, 175 (2003).
34. M. F. C. Gurgel, J. W. M. Espinosa, A. B. Campos, I. L. Rosa, M. R. Joya, A. G. Souza, M. A. Zaghete, P. S. Pizani, E. R. Leite, J. A. Varela, and E. Longo, J. Lumin. 126, 771 (2007).

Data & Media loading...


Article metrics loading...



BaTiO hollow nanofibers were fabricated by electrospinning and then subsequent calcination of as-spun nanofibers with a heating rate of 2.5 °C/min. Scanning electron microscope and transmission electron microscope (TEM) results indicated that the heating rate had a significant effect on the morphology of the BaTiO hollow nanofibers. The X-ray diffraction, Raman spectroscopy, and TEM results indicate the prepared BaTiO hollow nanofibers have tetragonal phases. From the results of the X-ray photoelectron spectroscopy analysis, in the amorphous BaTiO nanofiber, peaks at 457.2 eV for Ti 2p were also found, which corresponded to the Ti3+ ions. However, in the crystalline BaTiO nanofibers, peaks of Ti 2p showed the Ti4+ ions. Intense visible photoluminescence was observed in the amorphous BaTiO nanofiber, which is calcined below a temperature of 500 °C. The observed intense photoluminescence was ascribed to a multiphonon process with localized states within the band gap of the highly disordered states. In the crystalline BaTiO hollow fiber, low intensity of photoluminescence showed at the visible region, which is originated from an intrinsic Ba defect.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd