Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, IEEE Trans. Electron Devices 56(4), 648655 (2009).
2. S. Maikap, M. H. Lee, S. T. Chang, and C. W. Liu, Semicond. Sci. Technol. 22(4), 342347 (2007).
3. C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, IEDM Tech. Dig. 4 (2002).
4. T. Low, M. F. Li, C. Shen, Y. C. Yeo, Y. T. Hou, C. X. Zhu, A. Chin, and D. L. Kwong, Appl. Phys. Lett. 85(12), 24022404 (2004).
5. C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, IEDM Tech. Dig. 1811 (2012).
6. V. H. Nguyen, A. Dobbie, M. Myronov, D. J. Norris, T. Walther, and D. R. Leadley, Thin Solid Films 520, 32223226 (2012).
7. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72(24), 31753177 (1998).
8. V. Destefanis, J. Hartmann, A. Abbadie, A. M. Papon, and T. Billon, J. Cryst. Growth 311(4), 10701079 (2009).
9. M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, Thin Solid Films 508(1–2), 136139 (2006).
10. J. M. Hartmann, A. M. Papon, V. Destefanis, and T. Billon, J. Cryst. Growth 310, 52875296 (2008).
11. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, Thin Solid Films 519(22), 79117917 (2011).
12. T. F. Wietler, E. Bugiel, and K. R. Hofmann, Thin Solid Films 517, 272274 (2008).
13. J. S. Park, M. Curtin, J. M. Hydrick, J. Bai, J.-T. Li, Z. Cheng, M. Carroll, J. G. Fiorenza, and A. Lochtefeld, Electrochem. Solid State Lett. 12(4), H142H144 (2009).
14. V. Destefanis, J. M. Hartmann, L. Baud, and T. Billon, J. Cryst. Growth 312(7), 918925 (2010).
15. A. Usui, Jpn. J. Appl. Phys., Part 2 36(7B), L899L902 (1997).
16. A. Dobbie, V. H. Nguyen, M. Myronov, T. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Express 5, 071301 (2012).
17. G. Capellini, M. D. Seta, Y. Busby, M. Pea, F. Evangelisti, G. Nicotra, C. Spinella, M. Nardone, and C. Ferrari, J. Appl. Phys. 107(6), 063504 (2010).
18. F. K. LeGoues, M. Hornvonhoegen, M. Copel, and R. M. Tromp, Phys. Rev. B 44(23), 1289412902 (1991).
19. Y. Ishikawa, K. Wada, J. F. Liu, D. D. Cannon, H. C. Luan, J. Michel, and L. C. Kimerling, J. Appl. Phys. 98(1), 013501 (2005).
20. M. Horn-von Hoegen, F. Heringdorf, M. Kammler, C. Schaeffer, D. Reinking, and K. R. Hofmann, Thin Solid Films. 343–344, 579582 (1999).
21. A. Elfving, M. Zhao, G. V. Hansson, and W. X. Ni, Appl. Phys. Lett. 89(18), 181901 (2006).
22. K. Arimoto, M. Watanabe, J. Yamanaka, N. Usami, K. Nakajima, K. Sawano, and Y. Shiraki, J. Cryst. Growth 311(3), 819824 (2009).
23. I. Kovačević, B. Pivac, P. Dubcek, H. Zorc, N. Radic, S. Bernstorff, M. Campione, and A. Sassella, Appl. Surf. Sci. 253(6), 30343040 (2007).
24. C. Tetelin, X. Wallart, D. Stievenard, J. P. Nys, and D. J. Gravestejin, J. Vac. Sci. Technol. B 16(1), 137141 (1998).
25. A. Riposan, G. K. M. Martin, and J. M. Millunchick, Appl. Phys. Lett. 83(22), 45184520 (2003).
26. A. Dobbie, V. H. Nguyen, R. J. H. Morris, X. -C. Liu, M. Myronov, and D. R. Leadley, J. Electrochem. Soc. 159(5), H490H496 (2012).
27. D. E. Jesson, K. M. Chen, S. J. Pennycook, T. Thundat, and R. J. Warmack, Phys. Rev. Lett. 77(7), 13301333 (1996).
28. L. Vescan, K. Grimm, and C. Dieker, J. Vac. Sci. Technol. B 16, 1549 (1998).
29. S. A. Chaparro, Y. Zhang, and J. Drucker, Appl. Phys. Lett. 76(24), 35343536 (2000).
30. U. Denker, O. G. Schmidt, N.-Y. Jin-Philipp, and K. Eberl, Appl. Phys. Lett. 78(23), 37233725 (2001).
31. E. Sutter, P. Sutter, and J. E. Bernard, Appl. Phys. Lett. 84(13), 22622264 (2004).
32. F. Fossard, M. Halbwax, V. Yam, H. L. Nguyen, V. Mather, D. Cammilleri, D. Bebarre, J. Boulmer, and D. Bouchier, ECS Trans. 3(7), 593598 (2006).
33. T. F. Wietler, A. Ott, E. Bugiel, and K. R. Hofmann, Mater. Sci. Semicond. Process. 8(1–3), 7377 (2005).
34. R. Hull, J. C. Bean, L. Peticolas, and D. Bahnck, Appl. Phys. Lett. 59, 964 (1991).

Data & Media loading...


Article metrics loading...



Epitaxial growth of Ge on Si has been investigated in order to produce high quality Ge layers on (110)- and (111)-orientated Si substrates, which are of considerable interest for their predicted superior electronic properties compared to (100) orientation. Using the low temperature/high temperature growth technique in reduced pressure chemical vapour deposition, high quality (111) Ge layers have been demonstrated almost entirely suppressing the formation of stacking faults (< 107 cm−2) with a very low rms roughness of less than 2 nm and a reduction in threading dislocation density (TDD) (∼ 3 × 108 cm−2). The leading factor in improving the buffer quality was use of a thin, partially relaxed Ge seed layer, where the residual compressive strain promotes an intermediate islanding step between the low temperature and high temperature growth phases. (110)-oriented layers were also examined and found to have similar low rms roughness (1.6 nm) and TDD below 108 cm−2, although use of a thin seed layer did not offer the same relative improvement seen for (111).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd