Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/15/10.1063/1.4825130
1.
1. D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, IEEE Trans. Electron Devices 56(4), 648655 (2009).
http://dx.doi.org/10.1109/TED.2009.2014198
2.
2. S. Maikap, M. H. Lee, S. T. Chang, and C. W. Liu, Semicond. Sci. Technol. 22(4), 342347 (2007).
http://dx.doi.org/10.1088/0268-1242/22/4/008
3.
3. C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, IEDM Tech. Dig. 4 (2002).
4.
4. T. Low, M. F. Li, C. Shen, Y. C. Yeo, Y. T. Hou, C. X. Zhu, A. Chin, and D. L. Kwong, Appl. Phys. Lett. 85(12), 24022404 (2004).
http://dx.doi.org/10.1063/1.1788888
5.
5. C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, IEDM Tech. Dig. 1811 (2012).
6.
6. V. H. Nguyen, A. Dobbie, M. Myronov, D. J. Norris, T. Walther, and D. R. Leadley, Thin Solid Films 520, 32223226 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.099
7.
7. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72(24), 31753177 (1998).
http://dx.doi.org/10.1063/1.121584
8.
8. V. Destefanis, J. Hartmann, A. Abbadie, A. M. Papon, and T. Billon, J. Cryst. Growth 311(4), 10701079 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.12.034
9.
9. M. L. Lee, D. A. Antoniadis, and E. A. Fitzgerald, Thin Solid Films 508(1–2), 136139 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.07.328
10.
10. J. M. Hartmann, A. M. Papon, V. Destefanis, and T. Billon, J. Cryst. Growth 310, 52875296 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.08.062
11.
11. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, Thin Solid Films 519(22), 79117917 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.06.022
12.
12. T. F. Wietler, E. Bugiel, and K. R. Hofmann, Thin Solid Films 517, 272274 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.018
13.
13. J. S. Park, M. Curtin, J. M. Hydrick, J. Bai, J.-T. Li, Z. Cheng, M. Carroll, J. G. Fiorenza, and A. Lochtefeld, Electrochem. Solid State Lett. 12(4), H142H144 (2009).
http://dx.doi.org/10.1149/1.3077178
14.
14. V. Destefanis, J. M. Hartmann, L. Baud, and T. Billon, J. Cryst. Growth 312(7), 918925 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2010.01.003
15.
15. A. Usui, Jpn. J. Appl. Phys., Part 2 36(7B), L899L902 (1997).
http://dx.doi.org/10.1143/JJAP.36.L899
16.
16. A. Dobbie, V. H. Nguyen, M. Myronov, T. Whall, E. H. C. Parker, and D. R. Leadley, Appl. Phys. Express 5, 071301 (2012).
http://dx.doi.org/10.1143/APEX.5.071301
17.
17. G. Capellini, M. D. Seta, Y. Busby, M. Pea, F. Evangelisti, G. Nicotra, C. Spinella, M. Nardone, and C. Ferrari, J. Appl. Phys. 107(6), 063504 (2010).
http://dx.doi.org/10.1063/1.3327435
18.
18. F. K. LeGoues, M. Hornvonhoegen, M. Copel, and R. M. Tromp, Phys. Rev. B 44(23), 1289412902 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.12894
19.
19. Y. Ishikawa, K. Wada, J. F. Liu, D. D. Cannon, H. C. Luan, J. Michel, and L. C. Kimerling, J. Appl. Phys. 98(1), 013501 (2005).
http://dx.doi.org/10.1063/1.1943507
20.
20. M. Horn-von Hoegen, F. Heringdorf, M. Kammler, C. Schaeffer, D. Reinking, and K. R. Hofmann, Thin Solid Films. 343–344, 579582 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01659-9
21.
21. A. Elfving, M. Zhao, G. V. Hansson, and W. X. Ni, Appl. Phys. Lett. 89(18), 181901 (2006).
http://dx.doi.org/10.1063/1.2364861
22.
22. K. Arimoto, M. Watanabe, J. Yamanaka, N. Usami, K. Nakajima, K. Sawano, and Y. Shiraki, J. Cryst. Growth 311(3), 819824 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.064
23.
23. I. Kovačević, B. Pivac, P. Dubcek, H. Zorc, N. Radic, S. Bernstorff, M. Campione, and A. Sassella, Appl. Surf. Sci. 253(6), 30343040 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.06.048
24.
24. C. Tetelin, X. Wallart, D. Stievenard, J. P. Nys, and D. J. Gravestejin, J. Vac. Sci. Technol. B 16(1), 137141 (1998).
http://dx.doi.org/10.1116/1.589768
25.
25. A. Riposan, G. K. M. Martin, and J. M. Millunchick, Appl. Phys. Lett. 83(22), 45184520 (2003).
http://dx.doi.org/10.1063/1.1631053
26.
26. A. Dobbie, V. H. Nguyen, R. J. H. Morris, X. -C. Liu, M. Myronov, and D. R. Leadley, J. Electrochem. Soc. 159(5), H490H496 (2012).
http://dx.doi.org/10.1149/2.063205jes
27.
27. D. E. Jesson, K. M. Chen, S. J. Pennycook, T. Thundat, and R. J. Warmack, Phys. Rev. Lett. 77(7), 13301333 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1330
28.
28. L. Vescan, K. Grimm, and C. Dieker, J. Vac. Sci. Technol. B 16, 1549 (1998).
http://dx.doi.org/10.1116/1.589937
29.
29. S. A. Chaparro, Y. Zhang, and J. Drucker, Appl. Phys. Lett. 76(24), 35343536 (2000).
http://dx.doi.org/10.1063/1.126698
30.
30. U. Denker, O. G. Schmidt, N.-Y. Jin-Philipp, and K. Eberl, Appl. Phys. Lett. 78(23), 37233725 (2001).
http://dx.doi.org/10.1063/1.1378049
31.
31. E. Sutter, P. Sutter, and J. E. Bernard, Appl. Phys. Lett. 84(13), 22622264 (2004).
http://dx.doi.org/10.1063/1.1669068
32.
32. F. Fossard, M. Halbwax, V. Yam, H. L. Nguyen, V. Mather, D. Cammilleri, D. Bebarre, J. Boulmer, and D. Bouchier, ECS Trans. 3(7), 593598 (2006).
http://dx.doi.org/10.1149/1.2355856
33.
33. T. F. Wietler, A. Ott, E. Bugiel, and K. R. Hofmann, Mater. Sci. Semicond. Process. 8(1–3), 7377 (2005).
http://dx.doi.org/10.1016/j.mssp.2004.09.077
34.
34. R. Hull, J. C. Bean, L. Peticolas, and D. Bahnck, Appl. Phys. Lett. 59, 964 (1991).
http://dx.doi.org/10.1063/1.106316
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/15/10.1063/1.4825130
Loading
/content/aip/journal/jap/114/15/10.1063/1.4825130
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/15/10.1063/1.4825130
2013-10-17
2016-12-05

Abstract

Epitaxial growth of Ge on Si has been investigated in order to produce high quality Ge layers on (110)- and (111)-orientated Si substrates, which are of considerable interest for their predicted superior electronic properties compared to (100) orientation. Using the low temperature/high temperature growth technique in reduced pressure chemical vapour deposition, high quality (111) Ge layers have been demonstrated almost entirely suppressing the formation of stacking faults (< 107 cm−2) with a very low rms roughness of less than 2 nm and a reduction in threading dislocation density (TDD) (∼ 3 × 108 cm−2). The leading factor in improving the buffer quality was use of a thin, partially relaxed Ge seed layer, where the residual compressive strain promotes an intermediate islanding step between the low temperature and high temperature growth phases. (110)-oriented layers were also examined and found to have similar low rms roughness (1.6 nm) and TDD below 108 cm−2, although use of a thin seed layer did not offer the same relative improvement seen for (111).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/15/1.4825130.html;jsessionid=QlaoW3diRJkj71-Z7ZQ7YMjh.x-aip-live-02?itemId=/content/aip/journal/jap/114/15/10.1063/1.4825130&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/15/10.1063/1.4825130&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/15/10.1063/1.4825130'
Right1,Right2,Right3,