Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/15/10.1063/1.4825222
1.
1. A. J. R. de Kock, W. T. Stacy, and W. M. van de Wijgert, Appl. Phys. Lett. 34, 611 (1979).
http://dx.doi.org/10.1063/1.90863
2.
2. T. Abe, H. Harada, and J. Chikawa, Mater. Res. Soc. Proc. 14, 1 (1982).
http://dx.doi.org/10.1557/PROC-14-1
3.
3. E. Dornberger, D. Graef, M. Suhren, U. Lambert, P. Wagner, F. Dupret, and W. von Ammon, J. Cryst. Growth 180, 343 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00270-4
4.
4. L. Válek, D. Lysácek, and J. Sik, J. Electrochem. Soc. 154, H904 (2007).
http://dx.doi.org/10.1149/1.2769947
5.
5. K. Nakamura, R. Suewaka, T. Saishoji, and J. Tomioka, in Proceedings of the Forum on the Science and Technology of Silicon Materials 2003, 2003, p.161 and references therein.
6.
6. W. Sugimura T. Ono, S. Umeno, M. Hourai, and K. Sueoka, ECS Trans. 2, 95 (2006).
http://dx.doi.org/10.1149/1.2195652
7.
7. T. Abe, J. Cryst. Growth 334, 4 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.04.017
8.
8. J. Vanhellemont, X. Zhang, W. Xu, J. Chen, X. Ma, and D. Yang, J. Appl. Phys. 108, 123501 (2010).
http://dx.doi.org/10.1063/1.3503154
9.
9. K. Tanahashi, N. Inoue, and Y. Mizokawa, Physica B 308–310, 502 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00823-7
10.
10. K. Tanahashi, H. Harada, A. Koukitsu, and N. Inoue, J. Cryst. Growth 225, 294 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00877-6
11.
11. J. Vanhellemont, E. Kamiyama, and K. Sueoka, ECS J. Solid State Sci. Technol. 2, P166 (2013).
http://dx.doi.org/10.1149/2.024304jss
12.
12. S. Ma and S. Wang, Phys. Rev. B 81, 193203 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.193203
13.
13. A. F. Wright, Phys. Rev. B 74, 165116 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165116
14.
14. W. Windl, ECS Trans. 3, 171 (2006).
http://dx.doi.org/10.1149/1.2355755
15.
15. K. Sueoka, P. Śpiewak, and J. Vanhellemont, ECS Trans. 11, 375 (2007).
http://dx.doi.org/10.1149/1.2778678
16.
16. R. Jones, A. Carvalho, J. P. Goss, and P. R. Briddon, Mater. Sci. Eng. 159–160, 112 (2008).
17.
17. V. V. Voronkov, J. Cryst. Growth 59, 625 (1982).
http://dx.doi.org/10.1016/0022-0248(82)90386-4
18.
18. V. V. Voronkov, G. I. Voronkova, N. V. Veselovskaya, M. G. Mil'vidskii, and I. F. Chervonyi, Kristallografiya 29, 1176 (1984).
19.
19. V. V. Voronkov and R. Falster, J. Appl. Phys. 86, 5975 (1999).
http://dx.doi.org/10.1063/1.371642
20.
20. J. Vanhellemont, J. Appl. Phys. 110, 063519 (2011);
http://dx.doi.org/10.1063/1.3641635
20. J. Vanhellemont, J. Appl. Phys. 110, 129903 (2011).
http://dx.doi.org/10.1063/1.3674273
21.
21. K. Sueoka, E. Kamiyama, and H. Kariyazaki, J. Appl. Phys. 111, 093529 (2012).
http://dx.doi.org/10.1063/1.4712632
22.
22. K. Sueoka, E. Kamiyama, and J. Vanhellemont, J. Cryst. Growth 363, 97 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.10.014
23.
23. E. Kamiyama, J. Vanhellemont, K. Sueoka, K. Araki, and K. Izunome, Appl. Phys. Lett. 102, 082108 (2013).
http://dx.doi.org/10.1063/1.4793662
24.
24.The CASTEP code is available from Accelrys Software Inc.
25.
25. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
26.
26. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
27.
27. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
28.
28. T. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).
http://dx.doi.org/10.1021/j100203a036
29.
29. H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
30.
30. A. Denton and N. Ashcroft, Phys. Rev. A 43, 3161 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.3161
31.
31. M. Sluiter and Y. Kawazoe, Mater. Trans. 42, 2201 (2001).
http://dx.doi.org/10.2320/matertrans.42.2201
32.
32. B. Puchala, Ph.D. thesis, Table 2.1 and 2.2, The University of Michigan (2009) and references therein.
33.
33. M. Y. L. Jung, R. Gunawan, R. D. Braatz, and E. G. Seebauer, AlChE J. 50, 3248 (2004).
http://dx.doi.org/10.1002/aic.10220
34.
34. G. M. Lopez, V. Fiorentini, G. Impellizzeri, S. Mirabella, and E. Napolitani, Phys. Rev. B 72, 045219 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045219
35.
35. L. Lin, T. Kirichenko, B. R. Sahu, G. S. Hwang, and S. K. Banerjee, Phys. Rev. B 72, 205206 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205206
36.
36. K. Levasseur-Smith and N. Mousseau, Eur. Phys. J. B 64, 165 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00296-4
37.
37. A. Chroneos, Phys. Status Solidi B 244, 3206 (2007).
http://dx.doi.org/10.1002/pssb.200642622
38.
38. A. Chroneos, R. W. Grimes, and H. Bracht, J. Appl. Phys. 105, 016102 (2009).
http://dx.doi.org/10.1063/1.3056387
39.
39. M. Kaukonen, R. Jones, S. Oberg, and P. R. Briddon, Nucl. Instrum. Methods Phys. Res. B 186, 24 (2002).
http://dx.doi.org/10.1016/S0168-583X(01)00888-6
40.
40. A. Chroneos, C. A. Londos, E. N. Sgourou, and P. Pochet, Appl. Phys. Lett. 99, 241901 (2011).
http://dx.doi.org/10.1063/1.3666226
41.
41. B. Sahli, K. Vollenweider, and W. Fichtner, Phys. Rev. B 80, 075208 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075208
42.
42. H. Bracht and A. Chroneos, J. Appl. Phys. 104, 076108 (2008).
http://dx.doi.org/10.1063/1.2996284
43.
43. A. Chroneos, R. W. Grimes, and C. Tsamis, J. Mater. Sci.: Mater. Electron. 18, 763 (2007).
http://dx.doi.org/10.1007/s10854-006-9073-8
44.
44. D. C. Mueller, E. Alonso, and W. Fichtner, Phys. Rev. B 68, 045208 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045208
45.
45. K. Nakamura, T. Saishoji, and J. Tomioka, in Semiconductor Silicon 2002, PV 2002-2, The Electrochemical Society Proceedings Series, 2002, p. 554.
46.
46. T. Sinno, J. Cryst. Growth 303, 5 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.278
47.
47. M. Kulkarni, ECS Trans. 2, 213 (2006).
http://dx.doi.org/10.1149/1.2195661
48.
48. J. Vanhellemont, M. Suezawa, and I. Yonenaga, J. Appl. Phys. 108, 016105 (2010).
http://dx.doi.org/10.1063/1.3449080
49.
49. Ranki and Saarinen, Phys. Rev. Lett. 93, 255502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.255502
50.
50. T. Saishoji, K. Nakamura, H. Nakajima, T. Yokoyama, F. Ishikawa, and J. Tomioka, in High Purity Silicon V, PV98-13, The Electrochemical Society Proceedings Series, 1998, p. 28.
51.
51. M. Hourai, E. Kajita, T. Nagashima, H. Fujiwara, S. Ueno, S. Sadamitsu, S. Miki, and T. Shigematsu, Mater. Sci. Forum 196–201, 1713 (1995).
http://dx.doi.org/10.4028/www.scientific.net/MSF.196-201.1713
52.
52. M. Hourai, H. Nishikawa, T. Tanaka, S. Umeno, E. Asayama, T. Nomachi, and G. Kelly, in Semiconductor Silicon 1998, PV 98-1, The Electrochemical Society Proceedings Series, 1998, p.453.
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/15/10.1063/1.4825222
Loading
/content/aip/journal/jap/114/15/10.1063/1.4825222
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/15/10.1063/1.4825222
2013-10-17
2016-09-26

Abstract

Density functional theory (DFT) calculations are performed to obtain the formation energies of the vacancy and the self-interstitial at all sites within a sphere around the dopant atom with 6 Å radius for and 5 Å radius for in Si crystals. Substitutional p-type (B and Ga), neutral (C, Ge, and Sn), and n-type (P, As, Sb, and Bi) dopants were considered. The results show that the formation energies of and around dopant atoms change depending on the types and sizes of the dopants, i.e., depending on the electrical state and the local strain around the dopants. The dependence of the total thermal equilibrium concentrations of point defects (sum of free or and or around the dopants) at melting temperature on the type and concentration of each dopant is obtained. Further DFT calculations reveal that most of the total incorporated point defects from the melt contribute to pair recombination. An appropriate model of point defect behavior in heavily doped single crystal Si growing from a melt is proposed on the basis of DFT calculations. (1) The incorporated total and concentrations at melting point depend on the types and concentrations of dopants. (2) Most of the total and concentrations during Si crystal growth contribute to the pair recombination at temperatures much higher than those to form grown-in defects. The Voronkov model successfully explains all reported experimental results on intrinsic point defect behavior dependence on dopant type and concentration for heavily doped Si while taking the present model into consideration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/15/1.4825222.html;jsessionid=kK6qq6yv9_-CR0muL9xLILBx.x-aip-live-03?itemId=/content/aip/journal/jap/114/15/10.1063/1.4825222&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/15/10.1063/1.4825222&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/15/10.1063/1.4825222'
Right1,Right2,Right3,