Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/16/10.1063/1.4826202
1.
1. Committee on Thermionic Research and Technology, Aeronautics and Space Engineering Board, National Research Council, Thermionics Quo Vadis? An Assessment of the DTRA's Advanced Thermionics Research and Development Program (The National Academies Press, 2001).
2.
2. J. M. Houston, J. Appl. Phys. 30, 481 (1959).
http://dx.doi.org/10.1063/1.1702392
3.
3. F. A. Koeck and R. J. Nemanich, Diamond Relat. Mater. 18, 232 (2009).
http://dx.doi.org/10.1016/j.diamond.2008.11.023
4.
4. F. A. Koeck, R. J. Nemanich, A. Lazea, and K. Haenen, Diamond Relat. Mater. 18, 789 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.01.024
5.
5. J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z.-X. Shen, and N. A. Melosh, Nature Mater. 9, 762 (2010).
http://dx.doi.org/10.1038/nmat2814
6.
6. T. Sun, F. A. M. Koeck, C. Zhu, and R. J. Nemanich, Appl. Phys. Lett. 99, 202101 (2011).
http://dx.doi.org/10.1063/1.3658638
7.
7. G. N. Hatsopoulos and J. Kaye, J. Appl. Phys. 29, 1124 (1958).
http://dx.doi.org/10.1063/1.1723373
8.
8. J. Lee, I. Bargatin, K. Iwami, K. Littau, M. Vincent, R. Maboudian, Z.-X. Shen, N. Melosh, and R. Howe, in Workshop on Solid-State Sensors, Actuators, and Microsystems Workshop (Hilton Head, SC, 2012).
9.
9. J. R. Smith, G. L. Bilbro, and R. J. Nemanich, Phys. Rev. B 76, 245327 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245327
10.
10. J. R. Smith, G. L. Bilbro, and R. J. Nemanich, J. Vac. Sci. Technol. B 27, 1132 (2009).
http://dx.doi.org/10.1116/1.3125282
11.
11. G. Gärtner, P. Geittner, H. Lydtin, and A. Ritz, Appl. Surf. Sci. 111, 11 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00698-8
12.
12. I. Langmuir, Phys. Rev. 21, 419 (1923).
http://dx.doi.org/10.1103/PhysRev.21.419
13.
13. A. F. Dugan, J. Appl. Phys. 31, 1397 (1960).
http://dx.doi.org/10.1063/1.1735850
14.
14. G. Hatsopoulos and E. Gyftopoulos, Thermionic Energy Conversion (MIT Press, Cambridge, MA, 1973), Vol. 1, p265.
15.
15. J. van der Weide, Z. Zhang, P. K. Baumann, M. G. Wensell, J. Bernholc, and R. J. Nemanich, Phys. Rev. B 50, 5803 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5803
16.
16. J. B. Cui, J. Ristein, and L. Ley, Phys. Rev. Lett. 81, 429 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.429
17.
17. P. Shefsiek, IEEE Trans. Plasma Sci. 38, 2041 (2010).
http://dx.doi.org/10.1109/TPS.2010.2050910
18.
18. N. S. Rasor, IEEE Trans. Plasma Sci. 19, 1191 (1991).
http://dx.doi.org/10.1109/27.125041
19.
19. J.-H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, Appl. Phys. Lett. 100, 173904 (2012).
http://dx.doi.org/10.1063/1.4707379
20.
20. J. Smith, See https://github.com/jrsmith3/tec for “tec—A python package for simulating vacuum thermionic energy conversion devices,” (2013).
21.
21. G. Wilson, Comput. Sci. Eng. 8, 66 (2006).
http://dx.doi.org/10.1109/MCSE.2006.122
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4826202 for the scripts used to calculate the data plotted in this manuscript. The python module (Ref. 20) used for these calculations is available online. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/16/10.1063/1.4826202
Loading
/content/aip/journal/jap/114/16/10.1063/1.4826202
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/16/10.1063/1.4826202
2013-10-31
2016-09-27

Abstract

Most attention to improving vacuum thermionic energy conversion device (TEC) technology has been on improving electron emission with little attention to collector optimization. A model was developed to characterize the output characteristics of a TEC where the collector features negative electron affinity. According to the model, there are certain conditions for which the space charge limitation can be reduced or eliminated. The model is applied to devices comprised materials reported in the literature, and predictions of output power and efficiency are made, targeting the sub-1000 K hot-side regime. By slightly lowering the collector barrier height, an output power of around 1 kW, at ≥20% efficiency for a reasonably sized device (∼0.1 m2 emission area) can be achieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/16/1.4826202.html;jsessionid=Zcc15r2ww_KDV-8aOpN43sDZ.x-aip-live-06?itemId=/content/aip/journal/jap/114/16/10.1063/1.4826202&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/16/10.1063/1.4826202&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/16/10.1063/1.4826202'
Right1,Right2,Right3,