Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/16/10.1063/1.4826901
1.
1. S. Isagawa, J. Appl. Phys. 51, 6010 (1980).
http://dx.doi.org/10.1063/1.327523
2.
2. B. Aune, B. Bonin, J. M. Cavedon, M. Juillard, A. Godin, C. Henriot, P. Leconte, H. Safa, A. Veyssiere, and C. Zylberajch, in Proceedings of the 1990 LINAC Conference (1990), pp. 253255.
3.
3. B. Bonin and R. W. Roth, in Proceedings of the 5th Workshop on RF Superconductivity (1991), pp. 210244.
4.
4. C. Z. Antoine, B. Aune, B. Bonin, J. Cavedon, M. Juillard, A. Godin, C. Henriot, P. Leconte, H. Safa, A. Veyssiere, A. Chevarier, and B. Roux, in Proceedings of the Fifth Workshop on RF Superconductivity, DESY, Hamburg, Germany (1991), pp. 616634.
5.
5. A. Romanenko, F. Barkov, L. D. Cooley, and A. Grassellino, Supercond. Sci. Tech. 26, 035003 (2013).
http://dx.doi.org/10.1088/0953-2048/26/3/035003
6.
6. A. Romanenko, C. J. Edwardson, P. G. Coleman, and P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013).
http://dx.doi.org/10.1063/1.4811090
7.
7. T. Higuchi, K. Saito, Y. Yamazaki, T. Ikeda, and S. Ohgushi, in Proceedings of the 10th Workshop on RF Superconductivity (2001), pp. 427430.
8.
8. K. Faber and H. Schultze, Scr. Metall. 6, 1065 (1972).
http://dx.doi.org/10.1016/0036-9748(72)90188-3
9.
9. S. Isagawa, J. Appl. Phys. 51, 4460 (1980).
http://dx.doi.org/10.1063/1.328267
10.
10. A. Grassellino, A. Romanenko, A. Rowe, L. D. Cooley, C. Ginsburg, and V. P. Yakovlev, in Proceedings of IPAC'12, WEPPC115 (2012).
11.
11. T. Higuchi and K. Saito, in Proceedings of the 11th Workshop on RF Superconductivity (2003), pp. 572578.
12.
12. F. Barkov, A. Romanenko, and A. Grassellino, Phys. Rev. ST Accel. Beams 15, 122001 (2012).
http://dx.doi.org/10.1103/PhysRevSTAB.15.122001
13.
13. H. K. Birnbaum, M. L. Grossbeck, and M. Amano, J. Less-Common Met. 49, 357 (1976).
http://dx.doi.org/10.1016/0022-5088(76)90048-5
14.
14. T. Schober, Phys. Status Solidi 30, 107 (1975).
http://dx.doi.org/10.1002/pssa.2210300111
15.
15. T. Schober, Scr. Metall. 7, 1119 (1973).
http://dx.doi.org/10.1016/0036-9748(73)90025-2
16.
16. T. Schober and U. Linke, Metallography 9, 309 (1976).
http://dx.doi.org/10.1016/0026-0800(76)90057-4
17.
17. T. Schober and U. Linke, J. Less-Common Met. 44, 63 (1976).
http://dx.doi.org/10.1016/0022-5088(76)90118-1
18.
18. T. Schober and U. Linke, J. Less-Common Met. 44, 77 (1976).
http://dx.doi.org/10.1016/0022-5088(76)90119-3
19.
19. J.-M. Welter and F. J. Johnen, Z. Phys. B 27, 227 (1977).
http://dx.doi.org/10.1007/BF01325532
20.
20. V. Somenkov, A. Gurskaya, M. Zemlyanov, M. Kost, N. Chernoplekov, and A. Chertkov, Sov. Phys. Solid State 10, 1076 (1968).
21.
21. D. Westlake, Trans. AIME 245, 287 (1969).
22.
22. G. Pfeiffer and H. Wipf, J. Phys. F: Met. Phys. 6, 167 (1976).
http://dx.doi.org/10.1088/0305-4608/6/2/013
23.
23. J. P. Welter, M. A. Pick, T. Schober, J. Hauck, H. F. Fenzl, and H. Wenzl, in Proceedings of the 2nd International Congress (1977).
24.
24. O. Buck, D. Thompson, and C. Wert, J. Phys. Chem. Solids 32, 2331 (1971).
http://dx.doi.org/10.1016/S0022-3697(71)80227-5
25.
25. H. Wenzl and J.-M. Welter, Current Topics in Materials Science (North-Holland Publishing Company, 1978).
26.
26. M. Pick, in Int. Meeting Hydrogen in Metals (1972), Vol. 1, pp. 9093.
27.
27. W. Albrecht, M. Mallett, and W. Goode, J. Electrochem. Soc. 105, 219 (1958).
http://dx.doi.org/10.1149/1.2428804
28.
28. C. Wainwright, A. Cook, and B. Hopkins, J. Less-Common Met. 6, 362 (1964).
http://dx.doi.org/10.1016/0022-5088(64)90134-1
29.
29. M. Amano and Y. Sasaki, Phys. Status Solidi A 19, 405 (1973).
http://dx.doi.org/10.1002/pssa.2210190203
30.
30. H. Paxton, J. Sheehan, and W. Babyak, Trans. AIME 215, 725 (1959).
31.
31. T. Schober, Phys. Status Solidi A 29, 395 (1975).
http://dx.doi.org/10.1002/pssa.2210290207
32.
32. R. W. Roth, in Proceedings of the 6th Workshop on RF Superconductivity (1993).
33.
33. C. Baker and H. K. Birnbaum, Acta Metall. 21, 865 (1973).
http://dx.doi.org/10.1016/0001-6160(73)90143-0
34.
34. A. Romanenko and L. V. Goncharova, Supercond. Sci. Tech. 24, 105017 (2011).
http://dx.doi.org/10.1088/0953-2048/24/10/105017
35.
35. C. Benvenuti, S. Calatroni, and V. Ruzinov, in Proceedings of the 10th Workshop on RF Superconductivity (Tsukuba, Japan, 2001), p. 441.
36.
36. J. A. Rodriguez and R. Kirchheim, Scr. Metall. 17, 159 (1983).
http://dx.doi.org/10.1016/0036-9748(83)90091-1
37.
37. E. Krautz, Int. J. Refract. Met. Hard Mater. 12, 315 (1993).
http://dx.doi.org/10.1016/0263-4368(93)90039-I
38.
38. K. Saito and P. Kneisel, in Proceedings of the 5th Workshop on RF Superconductivity (DESY, Hamburg, Germany, 1991) pp. 665679.
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/16/10.1063/1.4826901
Loading
/content/aip/journal/jap/114/16/10.1063/1.4826901
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/16/10.1063/1.4826901
2013-10-25
2016-12-10

Abstract

Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy, we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at  = 140 K within ∼30 min. 120 °C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/16/1.4826901.html;jsessionid=ponymilErMwi5pke_7YvUlq_.x-aip-live-03?itemId=/content/aip/journal/jap/114/16/10.1063/1.4826901&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/16/10.1063/1.4826901&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/16/10.1063/1.4826901'
Right1,Right2,Right3,