1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electrospun metallic nanowires: Synthesis, characterization, and applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/17/10.1063/1.4822482
1.
1.“High-Level Expert Group On Key Enabling Technologies-Final Report,” European Commission, 2011.
2.
2. M. Yun, N. V. Myung, R. P. Vasquez, C. Lee, E. Menke, and R. M. Penner, Nano Lett. 4, 419 (2004).
http://dx.doi.org/10.1021/nl035069u
3.
3. G. S. Lotey, S. Kumar, and N. K. Verma, Appl. Nanosci. 2, 7 (2012).
http://dx.doi.org/10.1007/s13204-011-0034-z
4.
4. B. Maria, E. Toimil, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, and J. Vetter, Adv. Mater. 13(1), 6265 (2001).
http://dx.doi.org/10.1002/1521-4095(200101)13:1%3C62::AID-ADMA62%3E3.0.CO;2-7
5.
5. T. Gao, G. Meng, Y. Wang, S. Sun, and L. Zhang, J. Phys.: Condens. Matter 14, 355 (2002).
http://dx.doi.org/10.1088/0953-8984/14/3/306
6.
6. Y. T. Pang, G. W. Meng, Y. Zhang, Q. Fang, and L. D. Zhang, Appl. Phys. A: Mater. Sci. Process. 76, 533 (2003).
http://dx.doi.org/10.1007/s00339-002-1483-8
7.
7. L. Liu, S. Xie, L. Song, Y. Gao, D. Liu, X. Dou, S. Luo, J. Wang, X. Zhao, Z. Zhang, Y. Xiang, W. Zhou, C. Wang, and G. Wang, Nanotechnology 17, 19 (2006).
http://dx.doi.org/10.1088/0957-4484/17/1/004
8.
8. R. P. Chauhan and D. Gehlawat, Sci. Adv. Mater. 4, 151 (2012).
http://dx.doi.org/10.1166/sam.2012.1265
9.
9. Y.-J. Chen, J.-H. Hsu, and H.-N. Lin, Nanotechnology 16, 1112 (2005).
http://dx.doi.org/10.1088/0957-4484/16/8/020
10.
10. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, Opt. Express 14, 2323 (2006).
http://dx.doi.org/10.1364/OE.14.002323
11.
11. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Appl. Phys. Lett. 90, 063111 (2007).
http://dx.doi.org/10.1063/1.2472532
12.
12. M. Geissler, H. Wolf, R. Stutz, E. Delamarche, U.-W. Grummt, B. Michel, and A. Bietsch, Langmuir 19, 6301 (2003).
http://dx.doi.org/10.1021/la034464x
13.
13. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, Appl. Phys. Lett. 90, 061104 (2007).
http://dx.doi.org/10.1063/1.2437731
14.
14. J.-H. Lee, K. Yang, S.-H. Hong, H. Lee, and K.-W. Choi, Microelectron. Eng. 85, 710 (2008).
http://dx.doi.org/10.1016/j.mee.2007.12.058
15.
15. Z. Zhang, D. a Blom, Z. Gai, J. R. Thompson, J. Shen, and S. Dai, J. Am. Chem. Soc. 125, 7528 (2003).
http://dx.doi.org/10.1021/ja035185z
16.
16. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).
http://dx.doi.org/10.1021/nl073296g
17.
17. S. Liu, J. Yue, and A. Gedanken, Adv. Mater. 13, 656 (2001).
http://dx.doi.org/10.1002/1521-4095(200105)13:9<656::AID-ADMA656>3.0.CO;2-O
18.
18. Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett. 2, 165 (2002).
http://dx.doi.org/10.1021/nl010093y
19.
19. Z. L. Wang, X. Y. Kong, X. Wen, and S. Yang, J. Phys. Chem. B 107, 8275 (2003).
http://dx.doi.org/10.1021/jp035557q
20.
20. Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, and Y. Qian, J. Phys. Chem. B 107, 12658 (2003).
http://dx.doi.org/10.1021/jp036023s
21.
21. Y. Chang, M. L. Lye, and H. C. Zeng, Langmuir 21, 3746 (2005).
http://dx.doi.org/10.1021/la050220w
22.
22. C. F. Monson and A. T. Woolley, Nano Lett. 3, 359 (2003).
http://dx.doi.org/10.1021/nl034016+
23.
23. Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, and Y. Ito, J. Electroanal. Chem. 559, 149 (2003).
http://dx.doi.org/10.1016/S0022-0728(03)00157-8
24.
24. S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, Nano Lett. 8, 1386 (2008).
http://dx.doi.org/10.1021/nl080129n
25.
25. H. Choi and S.-H. Park, J. Am. Chem. Soc. 126, 6248 (2004).
http://dx.doi.org/10.1021/ja049217+
26.
26. Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, and Z. Y. Chen, Chem. Mater. 11, 545 (1999).
http://dx.doi.org/10.1021/cm981122h
27.
27. R. Adelung, L. Kipp, J. Brandt, L. Tarcak, M. Traving, C. Kreis, and M. Skibowski, Appl. Phys. Lett. 74, 3053 (1999).
http://dx.doi.org/10.1063/1.124062
28.
28. R. Adelung, J. Brandt, K. Rossnagel, O. Seifarth, L. Kipp, M. Skibowski, C. Ramírez, T. Strasser, and W. Schattke, Phys. Rev. Lett. 86, 1303 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1303
29.
29. R. Adelung, J. Brandt, L. Kipp, and M. Skibowski, Phys. Rev. B 63, 165327 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165327
30.
30. Y. Kondo and K. Takayanagi, Phys. Rev. Lett. 79, 3455 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3455
31.
31. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J. C. Nino, J. Am. Ceram. Soc. 89, 395 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00807.x
32.
32. M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, and J. H. Wendorff, Adv. Mater. 19, 4244 (2007).
http://dx.doi.org/10.1002/adma.200700849
33.
33. M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Gölzhäuser, and A. Greiner, Adv. Mater. 18, 2384 (2006).
http://dx.doi.org/10.1002/adma.200600103
34.
34. H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, Chem. Mater. 19, 3506 (2007).
http://dx.doi.org/10.1021/cm070280i
35.
35. N. A. M. Barakat, B. Kim, and H. Y. Kim, J. Phys. Chem. C 113, 531 (2009).
http://dx.doi.org/10.1021/jp805692r
36.
36. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett. 10, 4242 (2010).
http://dx.doi.org/10.1021/nl102725k
37.
37. N. S. Hansen, D. Cho, and Y. L. Joo, Small 8, 1510 (2012).
http://dx.doi.org/10.1002/smll.201102087
38.
38. H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi, and W. B. Kim, Electrochem. Commun. 11, 446 (2009).
http://dx.doi.org/10.1016/j.elecom.2008.12.027
39.
39. Y. S. Kim, H. J. Kim, and W. B. Kim, Electrochem. Commun. 11, 1026 (2009).
http://dx.doi.org/10.1016/j.elecom.2009.03.003
40.
40. J. M. Kim, H.-I. Joh, S. M. Jo, D. J. Ahn, H. Y. Ha, S.-A. Hong, and S.-K. Kim, Electrochim. Acta 55, 4827 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.03.036
41.
41. A. Formhals, US patent 1,975,504 (1934).
42.
42. W. J. Morton, US patent 705,691 (1902).
43.
43. D. Li and Y. Xia, Adv. Mater. 16, 1151 (2004).
http://dx.doi.org/10.1002/adma.200400719
44.
44. G. Taylor, Proc. R. Soc. London, Ser. A 313, 453 (1969).
http://dx.doi.org/10.1098/rspa.1969.0205
45.
45. A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys. 90, 4836 (2001).
http://dx.doi.org/10.1063/1.1408260
46.
46. J. Deitzel, J. Kleinmeyer, D. Harris, and N. Beck Tan, Polymer 42, 261 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00250-0
47.
47. T. Han, A. L. Yarin, and D. H. Reneker, Polymer 49, 1651 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.01.035
48.
48. P. K. Baumgarten, J. Colloid Interface Sci. 36, 71 (1971).
http://dx.doi.org/10.1016/0021-9797(71)90241-4
49.
49. L. Larrondo and R. S. J. Manley, J. Polym. Sci.: Polym. Phys. Ed. 19, 909 (1981).
http://dx.doi.org/10.1002/pol.1981.180190601
50.
50. L. Larrondo and R. S. J. Manley, J. Polym. Sci.: Polym. Phys. Ed. 19, 921 (1981).
http://dx.doi.org/10.1002/pol.1981.180190602
51.
51. I. Hayati, A. I. Bailey, and T. F. Tadros, J. Colloid Interface Sci. 117, 205 (1987).
http://dx.doi.org/10.1016/0021-9797(87)90185-8
52.
52. J. Doshi and D. H. Reneker, J. Electrost. 35, 151 (1995).
http://dx.doi.org/10.1016/0304-3886(95)00041-8
53.
53. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules 35, 8456 (2002).
http://dx.doi.org/10.1021/ma020444a
54.
54. C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules 37, 573 (2004).
http://dx.doi.org/10.1021/ma0351975
55.
55. D. H. Reneker and I. Chun, Nanotechnology 7, 216 (1996).
http://dx.doi.org/10.1088/0957-4484/7/3/009
56.
56. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polym. Sci. 96, 557 (2005).
http://dx.doi.org/10.1002/app.21481
57.
57. A. Greiner and J. H. Wendorff, Angew. Chem., Int. Ed. 46, 5670 (2007).
http://dx.doi.org/10.1002/anie.200604646
58.
58. N. Tomczak, S. Gu, M. Han, N. F. van Hulst, and G. Julius Vancso, Eur. Polym. J. 42, 2205 (2006).
http://dx.doi.org/10.1016/j.eurpolymj.2006.06.017
59.
59. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AIChE J. 45, 190 (1999).
http://dx.doi.org/10.1002/aic.690450116
60.
60. B. S. Lalia, Y. A. Samad, and R. Hashaikeh, J. Appl. Polym. Sci. 126, E442 (2012).
http://dx.doi.org/10.1002/app.36783
61.
61. B. S. Lalia, E. Guillen, H. Arafat, and R. Hashaikeh, J. Membr. Sci. 428, 104 (2013).
http://dx.doi.org/10.1016/j.memsci.2012.10.061
62.
62. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing, J. Controlled Release 92, 227 (2003).
http://dx.doi.org/10.1016/S0168-3659(03)00372-9
63.
63. H.-J. Jin, J. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials 25, 1039 (2004).
http://dx.doi.org/10.1016/S0142-9612(03)00609-4
64.
64. G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, and I. G. Loscertales, J. Am. Chem. Soc. 125, 1154 (2003).
http://dx.doi.org/10.1021/ja028983i
65.
65. S.-S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, J. Mater. Sci. Lett. 22, 891 (2003).
http://dx.doi.org/10.1023/A:1024475022937
66.
66. Y. Wang and J. J. Santiago-Avilés, Nanotechnology 15, 32 (2004).
http://dx.doi.org/10.1088/0957-4484/15/1/006
67.
67. J. J. Santiago-Aviles, Y. Wang, R. Furlan, and I. Ramos, Appl. Phys. A: Mater. Sci. Process. 78, 1043 (2004).
http://dx.doi.org/10.1007/s00339-003-2152-2
68.
68. D. Li and Y. Xia, Nano Lett. 3, 555 (2003).
http://dx.doi.org/10.1021/nl034039o
69.
69. D. Li, T. Herricks, and Y. Xia, Appl. Phys. Lett. 83, 4586 (2003).
http://dx.doi.org/10.1063/1.1630844
70.
70. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim, and M. A. Morris, Chem. Phys. Lett. 374, 79 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)00702-4
71.
71. X. Yang, C. Shao, H. Guan, X. Li, and J. Gong, Inorg. Chem. Commun. 7, 176 (2004).
http://dx.doi.org/10.1016/j.inoche.2003.10.035
72.
72. H. Guan, C. Shao, B. Chen, J. Gong, and X. Yang, Inorg. Chem. Commun. 6, 1409 (2003).
http://dx.doi.org/10.1016/j.inoche.2003.08.021
73.
73. H. Guan, C. Shao, S. Wen, B. Chen, J. Gong, and X. Yang, Inorg. Chem. Commun. 6, 1302 (2003).
http://dx.doi.org/10.1016/j.inoche.2003.08.003
74.
74. N. Dharmaraj, H. C. Park, B. M. Lee, P. Viswanathamurthi, H. Y. Kim, and D. R. Lee, Inorg. Chem. Commun. 7, 431 (2004).
http://dx.doi.org/10.1016/j.inoche.2003.12.033
75.
75. R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, J. Appl. Phys. 102, 111101 (2007).
http://dx.doi.org/10.1063/1.2815499
76.
76. S. Fridrikh, J. Yu, M. Brenner, and G. Rutledge, Phys. Rev. Lett. 90, 144502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.144502
77.
77. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, S. R. Kim, and M. A. Morris, Chem. Phys. Lett. 374, 79 (2003).
78.
78. J. T. McCann, D. Li, and Y. Xia, J. Mater. Chem. 15, 735 (2005).
http://dx.doi.org/10.1039/b415094e
79.
79. J. Yuh, J. C. Nino, and W. M. Sigmund, Mater. Lett. 59, 3645 (2005).
http://dx.doi.org/10.1016/j.matlet.2005.07.008
80.
80. S. Patachia, M. Rinja, and L. Isac, Rom. J. Phys. 51, 253 (2006).
81.
81. G. Tillet, B. Boutevin, and B. Ameduri, Prog. Polym. Sci. 36, 191 (2011).
http://dx.doi.org/10.1016/j.progpolymsci.2010.08.003
82.
82. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, J. Mater. Sci. Lett. 22, 891 (2003).
83.
83. A. L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys. 89, 3018 (2001).
http://dx.doi.org/10.1063/1.1333035
84.
84. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids 13, 2201 (2001).
http://dx.doi.org/10.1063/1.1383791
85.
85. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett. 78, 1149 (2001).
http://dx.doi.org/10.1063/1.1345798
86.
86. Y. J. Kim, Ph.D. thesis, University of Washington, 2011.
87.
87. C. P. Carroll and Y. L. Joo, J. Non-Newtonian Fluid Mech. 153, 130 (2008).
http://dx.doi.org/10.1016/j.jnnfm.2007.12.005
88.
88. E.-R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Controlled Release 81, 57 (2002).
http://dx.doi.org/10.1016/S0168-3659(02)00041-X
89.
89. J. Kameoka and H. G. Craighead, Appl. Phys. Lett. 83, 371 (2003).
http://dx.doi.org/10.1063/1.1592638
90.
90. D. Li, Y. Wang, and Y. Xia, Nano Lett. 3, 1167 (2003).
http://dx.doi.org/10.1021/nl0344256
91.
91. D. D. Evanoff and G. Chumanov, J. Phys. Chem. B 108, 13948 (2004).
http://dx.doi.org/10.1021/jp047565s
92.
92. R. Hashaikeh, I. S. Butler, and J. A. Kozinski, Thin Solid Films 515, 1918 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.07.038
93.
93. D. M. Littrell, J. Vac. Sci. Technol. A 4, 1608 (1986).
http://dx.doi.org/10.1116/1.573520
94.
94. D. M. Littrell, D. H. Bowers, and B. J. Tatarchuk, J. Chem. Soc., Faraday Trans. 1 83, 3271 (1987).
http://dx.doi.org/10.1039/f19878303271
95.
95. P. J. Soininen, Z. K.-E. Elers, V. Saanila, S. Kaipio, T. Sajavaara, and S. Haukka, J. Electrochem. Soc. 152, G122 (2005).
http://dx.doi.org/10.1149/1.1839491
96.
96. A. M. Abdelkader, A. Daher, R. A. Abdelkareem, and E. El-Kashif, Metall. Mater. Trans. B 38, 35 (2007).
http://dx.doi.org/10.1007/s11663-006-9016-z
97.
97. W.-K. Han, J.-W. Choi, G.-H. Hwang, S.-J. Hong, J.-S. Lee, and S.-G. Kang, Appl. Surf. Sci. 252, 2832 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.04.049
98.
98. M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, and J. H. Wendorff, Adv. Mater. 19, 4244 (2007).
99.
99. D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004).
http://dx.doi.org/10.1002/jemt.20093
100.
100. R. D. Tarey, R. S. Rastogi, and K. L. Chopra, Rigaku J. 4, 11 (1987).
101.
101. P. Dutta, Spec. Sect., Current Sci. 78, 1478 (2000).
102.
102. K. Ozalas and B. F. Hajek, Clays Clay Miner. 44, 811 (1996).
http://dx.doi.org/10.1346/CCMN.1996.0440612
103.
103. L. C. Campos, S. H. Dalal, D. L. Baptista, R. Magalhaes-Paniago, A. S. Ferlauto, W. I. Milne, L. O. Ladeira, and R. G. Lacerda, Appl. Phys. Lett. 90, 181929 (2007).
http://dx.doi.org/10.1063/1.2735956
104.
104. F. Yang, S. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner, ACS Nano 4, 5233 (2010).
http://dx.doi.org/10.1021/nn101475c
105.
105. D. Li and Y. Xia, Nano Lett. 3, 555 (2003).
106.
106. M. Wang, H. Singh, T. A. Hatton, and G. C. Rutledge, Polymer 45, 5505 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.06.013
107.
107. J. W. Gilmanl, D. L. VanderHart, and T. Kashiwagi, Fire and Polymers II, ACS Symposium Series 599 (American Chemical Society, 1994).
108.
108. G. H. Michler, Electron Microscopy of Polymers (Springer, 2008).
109.
109. R. Garcia and R. Perez, Surf. Sci. Rep. 47, 197 (2002).
http://dx.doi.org/10.1016/S0167-5729(02)00077-8
110.
110. A. Tilke, F. Simmel, H. Lorenz, R. Blick, and J. Kotthaus, Phys. Rev. B 68, 075311 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.075311
111.
111. D. Sun, C. Chang, S. Li, and L. Lin, Nano Lett. 6, 839 (2006).
http://dx.doi.org/10.1021/nl0602701
112.
112. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
113.
113. F. Zhou, A. Moore, J. Bolinsson, A. Persson, L. Fröberg, M. Pettes, H. Kong, L. Rabenberg, P. Caroff, D. Stewart, N. Mingo, K. Dick, L. Samuelson, H. Linke, and L. Shi, Phys. Rev. B 83, 205416 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.205416
114.
114. Y. A. Kosevich and A. V. Savin, Europhysics Lett. 88, 14002 (2009).
http://dx.doi.org/10.1209/0295-5075/88/14002
115.
115. P. Naphon and O. Khonseur, Int. Commun. Heat Mass Transfer 36, 39 (2009).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2008.09.001
116.
116. P. Zhou, C. Wu, and X. Li, Meas. Sci. Technol. 19, 115703 (2008).
http://dx.doi.org/10.1088/0957-0233/19/11/115703
117.
117. L. M. Bellan, J. Kameoka, and H. G. Craighead, Nanotechnology 16, 1095 (2005).
http://dx.doi.org/10.1088/0957-4484/16/8/017
118.
118. S.-H. Lee, C. Tekmen, and W. M. Sigmund, Mater. Sci. Eng., A 398, 77 (2005).
http://dx.doi.org/10.1016/j.msea.2005.03.014
119.
119. S.-Y. Gu, Q.-L. Wu, J. Ren, and G. J. Vancso, Macromol. Rapid Commun. 26, 716 (2005).
http://dx.doi.org/10.1002/marc.200400667
120.
120. F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. L. Yang, C. Li, and P. Willis, Adv. Mater. 15, 1161 (2003).
http://dx.doi.org/10.1002/adma.200304955
121.
121. B. Kracke and B. Damaschke, Appl. Phys. Lett. 77, 361 (2000).
http://dx.doi.org/10.1063/1.126976
122.
122. Y. Lu, C. Peng, Y. Ganesan, J. Y. Huang, and J. Lou, Nanotechnology 22, 355702 (2011).
http://dx.doi.org/10.1088/0957-4484/22/35/355702
123.
123. H. Zheng, A. Cao, C. R. Weinberger, J. Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, and S. X. Mao, Nat. Commun. 1, 144 (2010).
http://dx.doi.org/10.1038/ncomms1149
124.
124. Y. Lu, J. Song, J. Y. Huang, and J. Lou, Adv. Funct. Mater. 21, 3982 (2011).
http://dx.doi.org/10.1002/adfm.201101224
125.
125. M. S. Wang, I. Kaplan-Ashiri, X. L. Wei, R. Rosentsveig, H. D. Wagner, R. Tenne, and L. M. Peng, Nano Res. 1, 22 (2008).
http://dx.doi.org/10.1007/s12274-008-8008-5
126.
126. D. Zhang, J.-M. Breguet, R. Clavel, L. Phillippe, I. Utke, and J. Michler, Nanotechnology 20, 365706 (2009).
http://dx.doi.org/10.1088/0957-4484/20/36/365706
127.
127. A. Asthana, K. Momeni, A. Prasad, Y. K. Yap, and R. S. Yassar, Nanotechnology 22, 265712 (2011).
http://dx.doi.org/10.1088/0957-4484/22/26/265712
128.
128. H. Zheng, A. Cao, C. R. Weinberger, J. Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, and S. X. Mao, Nat. Commun. 1, 144 (2010).
129.
129. Y. Lu, C. Peng, Y. Ganesan, J. Y. Huang, and J. Lou, Nanotechnology 22, 355702 (2011).
130.
130. C.-C. Röhlig, M. Niebelschütz, K. Brueckner, K. Tonisch, O. Ambacher, and V. Cimalla, Phys. Status Solidi B 247, 2557 (2010).
http://dx.doi.org/10.1002/pssb.201046378
131.
131. M. M. Bergshoef and G. J. Vancso, Adv. Mater. 11, 1362 (1999).
http://dx.doi.org/10.1002/(SICI)15214095(199911)11:16%3C1362::AID-ADMA1362%3E3.0.CO;2-X
132.
132. J. K. I. M and D. H. Reneker, Polym. Compos. 20, 124 (1999).
http://dx.doi.org/10.1002/pc.10340
133.
133. E. C. Walter, K. Ng, M. P. Zach, R. M. Penner, and F. Favier, Microelectron. Eng. 61–62, 555 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00582-8
134.
134. E. C. Walter, M. P. Zach, F. Favier, B. J. Murray, K. Inazu, J. C. Hemminger, and R. M. Penner, Chemphyschem 4, 131 (2003).
http://dx.doi.org/10.1002/cphc.200390022
135.
135. E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach, and F. Favier, Surf. Interface Anal. 34, 409 (2002).
http://dx.doi.org/10.1002/sia.1328
136.
136. Y. S. Kim, S. H. Nam, H.-S. Shim, H.-J. Ahn, M. Anand, and W. B. Kim, Electrochem. Commun. 10, 1016 (2008).
http://dx.doi.org/10.1016/j.elecom.2008.05.003
137.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/17/10.1063/1.4822482
Loading
/content/aip/journal/jap/114/17/10.1063/1.4822482
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/17/10.1063/1.4822482
2013-11-01
2014-09-17

Abstract

Metals are known to have unique thermal, mechanical, electrical, and catalytic properties. On the other hand, metallic nanowires are promising materials for variety of applications such as transparent conductive film for photovoltaic devices, electrodes for batteries, as well as nano-reinforcement for composite materials. Whereas varieties of methods have been explored to synthesize metal nanowires with different characteristics, electrospinning has also been found to be successful for that purpose. Even though electrospinning of polymeric nanofibers is a well-established field, there are several challenges that need to be overcome to use the electrospinning technique for the fabrication of metallic nanowires. These challenges are mainly related to the multi-steps fabrication process and its relation to the structure evolution of the nanowires. In addition to reviewing the literature, this article identifies promising avenues for further research in this area with particular emphasis on the applications that nonwoven metal wires confined in a nano-scale can open.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/17/1.4822482.html;jsessionid=do8gq1aot8s29.x-aip-live-03?itemId=/content/aip/journal/jap/114/17/10.1063/1.4822482&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrospun metallic nanowires: Synthesis, characterization, and applications
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/17/10.1063/1.4822482
10.1063/1.4822482
SEARCH_EXPAND_ITEM