Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/17/10.1063/1.4829484
1.
1. B. Gleich and J. Weizenecker, Nature 435, 1214 (2005).
http://dx.doi.org/10.1038/nature03808
2.
2. T. Knopp, S. Biederer, T. Sattel, J. Weizenecker, B. Gleich, J. Borgert, and T. M. Buzug, Phys. Med. Biol. 54, 385 (2009).
http://dx.doi.org/10.1088/0031-9155/54/2/014
3.
3. T. Knopp, T. F. Sattel, S. Biederer, J. Rahmer, J. Weizenecker, B. Gleich, J. Borgert, and T. M. Buzug, IEEE Trans. Med. Imaging 29, 12 (2010).
http://dx.doi.org/10.1109/TMI.2009.2021612
4.
4. P. W. Goodwill, G. C. Scott, P. P. Stang, and S. M. Conolly, IEEE Trans. Med. Imaging 28, 1231 (2009).
http://dx.doi.org/10.1109/TMI.2009.2013849
5.
5. P. W. Goodwill and S. M. Conolly, IEEE Trans. Med. Imaging 29, 1851 (2010).
http://dx.doi.org/10.1109/TMI.2010.2052284
6.
6. P. W. Goodwill, K. Lu, B. Zheng, and S. M. Conolly, Rev. Sci. Instrum. 83, 033708 (2012).
http://dx.doi.org/10.1063/1.3694534
7.
7. P. W. Goodwill, E. U. Saritas, L. R. Croft, T. N. Kim, K. M. Krishnan, D. V. Schaffer, and S. M. Conolly, Adv. Mater. 24, 3870 (2012).
http://dx.doi.org/10.1002/adma.201200221
8.
8. R. M. Ferguson, A. P. Khandhar, and K. M. Krishnan, J. Appl. Phys. 111, 07B318 (2012).
http://dx.doi.org/10.1063/1.3676053
9.
9. S. Biederer, T. Knopp, T. F. Sattel, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, and T. M. Buzug, J. Phys. D: Appl. Phys. 42, 205007 (2009).
http://dx.doi.org/10.1088/0022-3727/42/20/205007
10.
10. R. M. Ferguson, K. R. Minard, A. P. Khandhar, and K. M. Krishnan, Med. Phys. 38, 1619 (2011).
http://dx.doi.org/10.1118/1.3554646
11.
11. D. Eberbeck, F. Wiekhorst, S. Wagner, and L. Trahms, Appl. Phys. Lett. 98, 182502 (2011).
http://dx.doi.org/10.1063/1.3586776
12.
12. T. Yoshida, K. Enpuku, F. Ludwig, J. Dieckhoff, T. Wawrzik, A. Lak, and M. Schilling, Springer Proc. Phys. 140, 3 (2012).
http://dx.doi.org/10.1007/978-3-642-24133-8_1
13.
13. F. Ludwig, T. Wawrzik, T. Yoshida, N. Gehrke, A. Briel, D. Eberbeck, and M. Schilling, IEEE Trans. Magn. 48, 3780 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2197601
14.
14. T. Yoshida, N. B. Othman., T. Tsubaki, J. Takamiya, and K. Enpuku, IEEE Trans. Magn. 48, 3788 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2198198
15.
15. Y. Ishihara, T. Honma, S. Nohara, and Y. Ito, BMC Medical Imaging 13, 15 (2013).
http://dx.doi.org/10.1186/1471-2342-13-15
16.
16. T. Rheinländer, R. Kötitz, W. Weitschies, and W. Semmler, J. Magn. Magn. Mater. 219, 219 (2000).
http://dx.doi.org/10.1016/S0304-8853(00)00439-X
17.
17. A. Jordan, T. Rheinländer, N. Waldöfner, and R. Scholz, J. Nanopart. Res. 5, 597 (2003).
http://dx.doi.org/10.1023/B:NANO.1739086155.67098.44
18.
18. A. F. Thünemann, S. Rolf, P. Knappe, and S. Weidner, Anal. Chem. 81, 296 (2009).
http://dx.doi.org/10.1021/ac802009q
19.
19. K. Enpuku, H. Watanabe, Y. Higuchi, T. Yoshida, H. Kuma, N. Hamasaki, M. Mitsunaga, H. Kanzaki, and A. Kandori, Jpn. J. Appl. Phys. 51, 023002 (2012).
http://dx.doi.org/10.1143/JJAP.51.023002
20.
20. D. V. Berkov, P. Görnert, N. Buske, C. Gansau, J. Muller, M. Giersig, W. Neumann, and D. Su, J. Phys. D 33, 331 (2000).
http://dx.doi.org/10.1088/0022-3727/33/4/303
21.
21. K. Enpuku, T. Tanaka, M. Matsuda, F. Dang, N. Enomoto, J. Hojo, K. Yoshinaga, F. Ludwig, F. Ghaffari, E. Heim, and M. Schilling, J. Appl. Phys. 102, 054901 (2007).
http://dx.doi.org/10.1063/1.2775882
22.
22. N. B. Othman, T. Tsubaki, D. Kitahara, T. Yoshida, and K. Enpuku, “ Harmonic Signal Analysis for Magnetic Nanoparticle Imaging,” J. Jpn. Soc. Powder Powder Metall. (unpublished).
23.
23. D.-X. Chen, N. Sun, and H.-C. Gu, J. Appl. Phys. 106, 063906 (2009).
http://dx.doi.org/10.1063/1.3211307
24.
24. J. Luis, G. Palacios, and F. J. Lázaro, Phys. Rev. B 58, 14937 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14937
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/17/10.1063/1.4829484
Loading
/content/aip/journal/jap/114/17/10.1063/1.4829484
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/17/10.1063/1.4829484
2013-11-05
2016-07-29

Abstract

We have characterized fractionated magnetic nanoparticles (MNPs) for magnetic particle imaging. Original Ferucarbotran particles were magnetically divided into three fractionated MNPs called MS1, MS2, and MS3. Harmonic spectra from the three fractionated MNPs were measured at excitation fields of 2.8 and 28 mT with a frequency of 10 kHz. MS1 showed a 2.5-fold increase in the harmonic spectrum over that of the original MNPs. To understand the origin of the enhancement in the harmonic spectrum from MS1, we explored the magnetic properties of the MS series, such as distributions of effective core size and anisotropy energy barrier, and the correlation between them. Using these results, we performed numerical simulations of the harmonic spectra based on the Langevin equation. The simulation results quantitatively explained the experimental results of the fractionated MS series. It was also clarified that MS1 includes a large portion of the MNPs that are responsible for the harmonic spectrum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/17/1.4829484.html;jsessionid=kWid_R7kJyPfTjSNq_MT8dz0.x-aip-live-06?itemId=/content/aip/journal/jap/114/17/10.1063/1.4829484&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/17/10.1063/1.4829484&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/17/10.1063/1.4829484'
Right1,Right2,Right3,