1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/18/10.1063/1.4829456
1.
1. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
2.
2. R. Zhu, A. Kumar, and Y. Yang, Adv. Mater. 23, 4193 (2011).
http://dx.doi.org/10.1002/adma.201101514
3.
3. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, ACS Nano 5, 7055 (2011).
http://dx.doi.org/10.1021/nn201767e
4.
4. S. Sista, Adv. Mater. 22, 380 (2010).
http://dx.doi.org/10.1002/adma.200901624
5.
5. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nature Photon. 69, 1 (2009).
6.
6. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
7.
7. S. C. Price, A. C. Stuart, L. Q. Yang, H. X. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625 (2011).
http://dx.doi.org/10.1021/ja1112595
8.
8. D. A. M. Egbe, E. Tekin, E. Birckner, A. Pivrikas, N. S. Sariciftci, and U. S. Schubert, Macromolecules 40, 7786 (2007).
http://dx.doi.org/10.1021/ma071676i
9.
9. G. Adam, A. Pivrikas, A. M. Ramil, S. Tadesse, T. Yohannes, N. S. Sariciftci, and D. A. M. Egbe, J. Mater. Chem. 21, 2594 (2011).
http://dx.doi.org/10.1039/c0jm02668a
10.
10. M. C. Chen, D. Liaw, W. Chen, Y. Huang, J. Sharma, and Y. Tai, Appl. Phys. Lett. 99, 223305 (2011).
http://dx.doi.org/10.1063/1.3664127
11.
11. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, and M. Ree, Nature Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
12.
12. J. A. Bartelt, Z. M. Beiley, E. T. Hoke, W. R. Mateker, J. D. Douglas, B. A. Collins, J. R. Tumbleston, K. R. Graham, A. Amassian, H. Ade, J. M. J. Fréchet, M. F. Toney, and M. D. McGehee, Adv. Energy Mater. 3, 364 (2013).
http://dx.doi.org/10.1002/aenm.201200637
13.
13. V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, C. Melzer, B. de Boer, J. K. J. Van Duren, and R. A. J. Janssen, Adv. Funct. Mater. 15, 795 (2005).
http://dx.doi.org/10.1002/adfm.200400345
14.
14. T. Mein Jin, G. Wei Peng, L. Jun, G. Pundir, C. Vijila, and C. Zhikuan, ACS Appl. Mater. Interfaces 2, 1414 (2010).
http://dx.doi.org/10.1021/am100078g
15.
15. D. H. K. Murthy, A. Melianas, Z. Tang, G. Juška, K. Arlauskas, F. Zhang, L. D. A. Siebbeles, O. Inganäs, and T. J. Savenije, Adv. Funct. Mater. 23, 4262 (2013).
http://dx.doi.org/10.1002/adfm.201203852
16.
16. H. Azimi, A. Senes, M. C. Scharber, K. Hingerl, and C. J. Brabec, Adv. Energy Mater. 1, 1162 (2011).
http://dx.doi.org/10.1002/aenm.201100331
17.
17. P. Sonar, S. P. Singh, Y. Li, Z. E. Ooi, T.-J. Ha, I. Wong, S. M. Siang, and A. Dodabalapur, Energy Environ. Sci. 4, 2288 (2011).
http://dx.doi.org/10.1039/c1ee01213d
18.
18. J. Ajuria, S. Chavhan, R. T. Zaera, J. Chen, A. J. Rondinone, P. Sonar, A. Dodabalapur, and R. Pacios, Organ. Electron. 14, 326 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.11.010
19.
19. T. J. Ha, P. Sonar, and A. Dodabalapur, Appl. Phys. Lett. 98, 253305 (2011).
http://dx.doi.org/10.1063/1.3601928
20.
20. E. L. Williams, S. Gorelik, I. Y. Phang, M. Bosman, C. Vijila, G. S. Subramanian, P. Sonar, J. Hobley, S. P. Singh, H. Matsuzaki, A. Furube, and R. Katoh, RSC Adv. 3, 20113 (2013).
http://dx.doi.org/10.1039/c3ra42636j
21.
21. G. Juska, K. Arlauskas, M. Viliunas, and J. Kocka, Phys. Rev. Lett. 84, 4946 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4946
22.
22. G. Juska, N. Nekrasas, V. Valentinavicius, P. Meredith, and A. Pivrikas, Phys. Rev B. 84, 155202 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155202
23.
23. C. Vijila, G. M. Ng, T. Mein Jin, G. Wei-Peng, and F. Zhu, Appl. Phys. Lett. 95, 263305 (2009).
http://dx.doi.org/10.1063/1.3279135
24.
24. A. Pivrikas, N. S. Sariciftci, G. Juska, and R. Osterbacka, Prog. Photovoltaics 15, 677 (2007).
http://dx.doi.org/10.1002/pip.791
25.
25. A. Pivrikas, G. Juška, R. Österbacka, M. Westerling, M. Viliunas, K. Arlauskas, and H. Stubb, Phys. Rev. B. 71, 125205 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125205
26.
26. A. Pivrikas, G. Juska, A. J. Mozer, M. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, Phys. Rev. Lett. 94, 176806 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176806
27.
27. A. Armin, G. Juska, B. W. Philippa, P. L. Burn, P. Meredith, R. D. White, and A. Pivrikas, Adv. Energy Mater. 3, 321 (2013).
http://dx.doi.org/10.1002/aenm.201200581
28.
28. G. Denler, A. J. Mozer, G. Juska, A. Pivrikas, R. Osterbacka, A. Fuchsbaur, and N. S. Sariciftci, Org. Electron. 7, 229 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.02.004
29.
29. A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, and H. Bässler, Phys. Rev B. 71, 035214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035214
30.
30. A. Pivrikas, H. Neugebauer, and N. S. Sariciftci, IEEE J. Sel. Top. Quantum Electron. 16, 1746 (2010).
http://dx.doi.org/10.1109/JSTQE.2010.2044978
31.
31. A. Armin, M. Velusamy, P. L. Burn, P. Meredith, and A. Pivrikas, Appl. Phys. Lett. 101, 083306 (2012).
http://dx.doi.org/10.1063/1.4747330
32.
32. C. Groves and N. C. Greenham, Phys. Rev. B 78, 155205 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.155205
33.
33. C. Vijila, A. Pivrikas, H. Chun, C. Zhikuan, R. Österbacka, and C. Soo Jin, Org. Electron. 8, 8 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.10.002
34.
34. W. Tang, C. Vijila, M. Liu, Z. K. Chen, and L. Ke, ACS Appl. Mater. Interfaces 1, 1467 (2009).
http://dx.doi.org/10.1021/am900144b
35.
35. A. Baumann, J. Lorrmann, D. Rauh, C. Deibel, and V. Dyakonov, Adv. Mater. 24, 4381 (2012).
http://dx.doi.org/10.1002/adma.201200874
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/18/10.1063/1.4829456
Loading
/content/aip/journal/jap/114/18/10.1063/1.4829456
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/18/10.1063/1.4829456
2013-11-13
2015-04-25

Abstract

The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole-naphthalene co-polymer and PCBM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/18/1.4829456.html;jsessionid=92qg4h06e0l9.x-aip-live-06?itemId=/content/aip/journal/jap/114/18/10.1063/1.4829456&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Relation between charge carrier mobility and lifetime in organic photovoltaics
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/18/10.1063/1.4829456
10.1063/1.4829456
SEARCH_EXPAND_ITEM