1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/19/10.1063/1.4827019
1.
1. P. Cruz, N. B. Carvalho, and K. A. Remley, IEEE Microw. Mag. 11, 83 (2010).
http://dx.doi.org/10.1109/MMM.2010.936493
2.
2. G. H. Haertling, J. Vacuum Sci. and Tech. A. 9, 414 (1991).
http://dx.doi.org/10.1116/1.577424
3.
3. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, J. Electroceram. 11, 5 (2003).
http://dx.doi.org/10.1023/B:JECR.0000015661.81386.e6
4.
4. A. Vorobiev, P. Rundqvist, K. Khamchane, and S. Gevorgian, Appl. Phys. Lett. 83, 3144 (2003).
http://dx.doi.org/10.1063/1.1619213
5.
5. G. Subramanyam, F. Ahamed, and R. Biggers, IEEE Microw. Wirel. Compon. Lett. 15, 739 (2005).
http://dx.doi.org/10.1109/LMWC.2005.858992
6.
6. G. Subramanyam, F. Ahamed, R. Biggers, R. Neidhard, E. Nykiel, J. Ebel, R. Strawser, K. Stamper, and M. Calcatera, Microwave Opt. Technol. Lett. 47(4), 370 (2005).
http://dx.doi.org/10.1002/mop.21172
7.
7. A. Kozyrev, A. Ivanov, T. Samoilova, O. Soldatenkov, K. Astafiev, and L. Sengupta, J. Appl. Phys. 88, 5334 (2000).
http://dx.doi.org/10.1063/1.1314327
8.
8. J. Nath, D. Ghosh, J. P. Maria, A. I. Kingon, W. Fathelbab, P. D. Franzon, and M. B. Steer, IEEE Trans. MTT 53, 2707 (2005).
http://dx.doi.org/10.1109/TMTT.2005.854196
9.
9. B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, IEEE Microw. Wirel. Compon. Lett. 12, 237 (2002).
http://dx.doi.org/10.1109/LMWC.2002.801129
10.
10. D. Kuylenstierna, A. Vorobiev, P. Linnér, and S. Gevorgian, IEEE Trans. Microwave Theory Tech. 53, 2164 (2005).
http://dx.doi.org/10.1109/TMTT.2005.848805
11.
11. A. Jamil, T. S. Kalkur, and N. Cramer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 222 (2007).
http://dx.doi.org/10.1109/TUFFC.2007.314503
12.
12. H. Jiang, M. Patterson, K. Pan, C. Zhang, G. Subramanyam, D. Kuhl, K. Leedy, and C. Cerny, IEEE Trans. Antennas and Propag. 60, 3111 (2012).
http://dx.doi.org/10.1109/TAP.2012.2196918
13.
13. B. Acikel, “High performance barium strontium titanate varactor technology for low cost circuit applications,” Ph.D. Dissertation (University of California at Santa Barbara, 2002).
14.
14. G. Subramanyam, M. Patterson, K. Leedy, R. Neidhard, C. Zhang, and G. Steinhauer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1692 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1599
15.
15. O. G. Vendik, I. B. Vendik, and V. O. Sherman, Integ. Ferroelectr. 43, 81 (2002).
http://dx.doi.org/10.1080/10584580212362
16.
16. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/R01
17.
17. N. Spaldin and M. Fiebig, Science 309, 391 (2005).
http://dx.doi.org/10.1126/science.1113357
18.
18. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
19.
19. C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
20.
20. J. Zhai, Z. Xing, S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 88, 062510 (2006).
http://dx.doi.org/10.1063/1.2172706
21.
21. J. F. Scott, Nature Mater. 6, 256 (2007).
http://dx.doi.org/10.1038/nmat1868
22.
22. C. Israel, N. D. Mathur, and J. F. Scott, Nature Mater. 7, 93 (2008).
http://dx.doi.org/10.1038/nmat2106
23.
23. J. Lou, D. Reed, M. Liu, and N. X. Sun, Appl. Phys. Lett. 94, 112508 (2009).
http://dx.doi.org/10.1063/1.3103273
24.
24. Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006).
http://dx.doi.org/10.1063/1.2191950
25.
25. A. Ustinov, G. Srinivasan, and B. A. Kalinikos, Appl. Phys. Lett. 90, 031913 (2007).
http://dx.doi.org/10.1063/1.2432953
26.
26. C. Pettiford, S. Dasgupta, J. Lou, S. D. Yoon, and N. X. Sun, IEEE Trans. Magn. 43, 3343 (2007).
http://dx.doi.org/10.1109/TMAG.2007.893790
27.
27. A. S. Tatarenko, V. Gheevarughese, and G. Srinivasan, Electron. Lett. 42, 540 (2006).
http://dx.doi.org/10.1049/el:20060167
28.
28. W. Eerensten, M. Wiora, J. L. Prieto, J. F. Scott, and N. D. Mathur, Nature Mater. 6, 348 (2007).
http://dx.doi.org/10.1038/nmat1886
29.
29. M. Liu, O. Obi, J. Lou, S. Stoute, J. Y. Huang, Z. Cai, K. S. Ziemer, and N. X. Sun, Appl. Phys. Lett. 92, 152504 (2008).
http://dx.doi.org/10.1063/1.2911743
30.
30. Y. Imanaka, T. Shioga, and J. D. Baniecki, Fujitsu Sci. Tech. J. 38, 22 (2002).
31.
31. A. Tombak, J.-P. Maria, F. T. Ayguavives, G. T. Stauf, A. I. Kingon, and A. Mortazawi, IEEE Trans. Microw. Theory Tech. 51, 462 (2003).
http://dx.doi.org/10.1109/TMTT.2002.807822
32.
32. F. A. Miranda, F. W. Van Keuls, R. R. Romanofsky, and G. Subramanyam, Integr. Ferroelectr. 22, 269 (1998).
http://dx.doi.org/10.1080/10584589808208048
33.
33. A. Kumar and S. G. Manavalan, Surf. Coat. Technol. 198, 406 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.10.044
34.
34. D. M. Potrepka, S. Hirsch, M. W. Cole, W. D. Nothwang, S. Zhong, and S. P. Alpay, J. Appl. Phys. 99, 014108 (2006).
http://dx.doi.org/10.1063/1.2159557
35.
35. W. K. Simon, E. K. Akdogan, A. Safaria, and J. A. Bellotti, Appl. Phys. Lett. 87, 082906 (2005).
http://dx.doi.org/10.1063/1.2031938
36.
36. A. Srivastava, V. Craciun, J. M. Howard, and R. K. Singh, Appl. Phys. Lett. 75, 3002 (1999).
http://dx.doi.org/10.1063/1.125215
37.
37. L. L. Lopez, J. Portelles, J. M. Siqueiros, G. A. Hirata, and J. Mckittrick, Thin Solid Films 373, 49 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01105-6
38.
38.See www.solmates.nl for Solutions in Material Science: SoleMateS.
39.
39. P. Varanasi, K. Leedy, D. Tomich, and G. Subramanyam, Thin Solid Films 517, 2878 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.10.123
40.
40. J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, and D. Y. Kaufman, Appl. Phys. Lett. 76, 625 (2000).
http://dx.doi.org/10.1063/1.125839
41.
41. G. K. Wehner, J. Vac. Sci. Technol. A 1, 487 (1983).
http://dx.doi.org/10.1116/1.571911
42.
42. R. A. York, A. S. Nagra, E. Erker, T. Taylor, P. Perisawamy, J. Speck, S. Streiffer, D. Kaufmann, and O. Auciello, in Presentation at ISAF Conference, Honolulu, Hawaii, August (2000).
43.
43. B. Acikel, P. J. Hansen, T. R. Taylor, A. S. Nagra, J. S. Speck, and R. A. York, J. Integr. Ferroelectr. 39, 291 (2001).
http://dx.doi.org/10.1080/10584580108011952
44.
44. N. K. Pervez, P. J. Hansen, and R. A. York, Appl. Phys. Lett. 85, 4451 (2004).
http://dx.doi.org/10.1063/1.1818724
45.
45. J. Fukushima, K. Kodaira, and T. Matsushita, J. Mater. Sci. 19, 595 (1984).
http://dx.doi.org/10.1007/BF02403247
46.
46. P. C. Joshi and M. W. Cole, Appl. Phys. Lett. 77, 289 (2000).
http://dx.doi.org/10.1063/1.126953
47.
47. M. W. Cole, W. D. Nothwang, C. Hubbard, E. Ngo, and M. Ervin, J. Appl. Phys. 93, 9218 (2003).
http://dx.doi.org/10.1063/1.1569392
48.
48. M. W. Cole, E. Ngo, S. Hirsch, J. D. Demaree, S. Zhong, and S. P. Alpay, J. Appl. Phys. 102, 034104 (2007).
http://dx.doi.org/10.1063/1.2761849
49.
49. K. K. Li, G. H. Haertling, and W. Y. Howng, Integr. Ferroelectr. 3, 81 (1993).
http://dx.doi.org/10.1080/10584589308216702
50.
50. X. Guo, Y. K. Zuo, K. K. Li, Q. Chen, and H. Jiang, J. Mater. Res. 22, 2125 (2007).
http://dx.doi.org/10.1557/jmr.2007.0266
51.
51. H. Jiang, W. Hu, and S. Liang, Integr. Ferroelectr. 28, 63 (2000).
http://dx.doi.org/10.1080/10584580008222221
52.
52. F. W. Van Keuls, C. H. Mueller, R. R. Romanofsky, J. D. Warner, F. A. Miranda, and H. Jiang, Report No. NASA/TM-2002-210906/REV1, 2002.
53.
53. O. Huang, A. Bandyopadhyay, and S. Bose, Mater. Sci. Eng., B 116, 19 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.09.005
54.
54. Y. Chen, T. Sakai, T. Chen, S. D. Yoon, A. L. Geiler, C. Vittoria, and V. G. Harris, Appl. Phys. Lett. 88, 062516 (2006).
http://dx.doi.org/10.1063/1.2173240
55.
55. M. Abe and Y. Tamaura, J. Appl. Phys. 55, 2614 (1984).
http://dx.doi.org/10.1063/1.333254
56.
56. D. G. Schlom, L. Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc. 91, 2429 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02556.x
57.
57. K. Endo, S. Saya, S. Misawa, and S. Yoshida, Thin Solid Films 206, 143 (1991).
http://dx.doi.org/10.1016/0040-6090(91)90409-Q
58.
58. L. L. H. King, K. Y. Hsieh, D. Lichterwalner, and A. I. Kingon, Appl. Phys. Lett. 59, 3045 (1991).
http://dx.doi.org/10.1063/1.105788
59.
59. B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, J. Vac. Sci. Technol. A 27, 461 (2009).
http://dx.doi.org/10.1116/1.3106610
60.
60. B. Jalan, R. Engel-Herbert, J. Cagnon, and S. Stemmer, J. Vac. Sci. Technol. A 27, 230 (2009).
http://dx.doi.org/10.1116/1.3065713
61.
61. E. Mikheev, A. P. Kajdos, A. J. Hauser, and S. Stemmer, Appl. Phys. Lett. 101, 252906 (2012).
http://dx.doi.org/10.1063/1.4773034
62.
62. J. F. Scott, Annu. Rev. Mater. Sci. 28, 79 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.79
63.
63. S. Ezhilvalavan and T.-Y. Tseng, Mater. Chem. Phys. 65, 227 (2000).
http://dx.doi.org/10.1016/S0254-0584(00)00253-4
64.
64. W. G. Breiland and G. H. Evans, J. Electrochem. Soc. 138, 1806 (1991).
http://dx.doi.org/10.1149/1.2085878
65.
65. G. S. Tompa, P. A. Zawadzki, K. Moy, M. McKee, A. G. Thompson, A. I. Gurary, E. Wolak, P. Esherick, W. G. Breiland, G. H. Evans, N. Bulitka, J. Hennessy, and C. J. L. Moore, J. Cryst. Growth 145(1–4), 655 (1994).
http://dx.doi.org/10.1016/0022-0248(94)91122-3
66.
66. F. Fitsilis, S. Regnery, P. Ehrhart, R. Waser, F. Schienle, M. Schumacher, M. Dauelsberg, P. Strzyzewski, and H. Juergensen, J. Eur. Ceram. Soc. 21, 1547 (2001).
http://dx.doi.org/10.1016/S0955-2219(01)00061-9
67.
67. T. Li, P. A. Zawadzki, and R. A. Stall, Proc. SPIE 3214, 104 (1997).
http://dx.doi.org/10.1117/12.284656
68.
68. J.-H. Lee and S.-W. Rhee, J. Electrochem. Soc. 146, 3783 (1999).
http://dx.doi.org/10.1149/1.1392550
69.
69. N. M. Sbrockey, M. W. Cole, T. S. Kalkur, M. Luong, J. E. Spanier, and G. S. Tompa, Integr. Ferroelectr. 126, 21 (2011).
http://dx.doi.org/10.1080/10584587.2011.574975
70.
70. A. Tombak, IEEE Trans. Microwave Theory Tech. 55, 370 (2007).
http://dx.doi.org/10.1109/TMTT.2006.889349
71.
71. R. Senthilnathan and J. L. Prince, IEEE J. Solid-State Circuits 26, 1724 (1991).
http://dx.doi.org/10.1109/4.98995
72.
72. H. Li and G. Subramanyam, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 2552 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.971
73.
73. T. S. Kalkur, N. Sbrockey, G. S. Tompa, M. W. Cole, and S. P. Alpay, Integr. Ferroelectr. 126, 28 (2011).
http://dx.doi.org/10.1080/10584587.2011.574978
74.
74. T. S. Kalkur, N. M. Sbrockey, G. S. Tompa, P. Alpay, J. E. Spanier, E. M. Galow, and M. W. Cole, Integr. Ferroelectr. 112, 1 (2010).
http://dx.doi.org/10.1080/10584587.2009.484656
75.
75. S. Gevorgian and A. Vorobiev, in Proceedings of European Microwave Conference (2010), p. 1210.
76.
76. S. A. Sis, V. Lee, and A. Mortazawi, IEEE MTT-S Int. Microwave Symp. Dig. 14 (2011).
http://dx.doi.org/10.1109/MWSYM.2011.5972960
77.
77. A. Volatier, E. Defay, M. Aid, A. N'hari, P. Ancey, and B. Dubus, Appl. Phys. Lett. 92, 032906 (2008).
http://dx.doi.org/10.1063/1.2837616
78.
78. J. Berge, A. Vorobiev, W. Steichen, and S. Gevorgian, IEEE Microw. Wirel. Compon. Lett. 17, 655 (2007).
http://dx.doi.org/10.1109/LMWC.2007.903445
79.
79. G. N. Saddik, D. S. Boesch, S. Stemmer, and R. A. York, Appl. Phys. Lett. 91, 043501 (2007).
http://dx.doi.org/10.1063/1.2759464
80.
80. T. S. Kalkur, N. Sbrockey, G. Tompa, and P. Alpay, in Proceedings of the IEEE Symposium on Applications of Ferroelectrics (ISAF) (2012), pp. 14.
81.
81. Y. Zhang and T. S. Kalkur, in Proceedings of Progress in Electromagnetics Research Symposium (2011), p. 999.
82.
82. K. Groves, M.S. Thesis, University of Dayton, 2007.
83.
83. L. Y. Chen, R. Forse, D. Chase, and R. A. York, IEEE MTT-S Int. Microwave Symp. Dig. 1, 261 (2004).
84.
84. T. S. Kalkur, C. Cotey, K. Chen, and S. Sun, Integr. Ferroelectr. 56, 1123 (2003).
http://dx.doi.org/10.1080/10584580390259768
85.
85. A. Victor, J. Nath, D. Gosh, B. B. Boyette, J. P. Maria, M. B. Steer, A. I. Kingon, and G. T. Stauf, IEE Proc. Microwaves, Antennas Propag. 153, 96 (2006).
http://dx.doi.org/10.1049/ip-map:20050068
86.
86. A. Kabir and T. S. Kalkur, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1638 (2013).
http://dx.doi.org/10.1109/TUFFC.2013.2746
87.
87. C. Kong, H. Li, S. Jiang, J. Zhou, X. Chen, and C. Chen, in Proceedings of International Radio Frequency Integration Technology (2011), p. 197.
88.
88. T. S. Kalkur and A. Kabir, Integr. Ferroelectr. 125, 36 (2011).
http://dx.doi.org/10.1080/10584587.2011.574037
89.
89. M. W. Cole, P. C. Joshi, M. H. Ervin, M. C. Wood, and R. L. Pfeffer, Thin Solid Films 374, 34 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01059-2
90.
90. K. Pervez, P. J. Hansen, and R. A. York, Appl. Phys. Lett. 85, 4451 (2004).
http://dx.doi.org/10.1063/1.1818724
91.
91. F. W. Van Keuls, F. Miranda, R. Romanofsky, J. Warner, and S. Alterovitz, Appl. Phys. Lett. 71, 3075 (1997).
http://dx.doi.org/10.1063/1.120251
92.
92. R. Romanofsky, Proc. IEEE 95, 1968 (2007).
http://dx.doi.org/10.1109/JPROC.2007.905065
93.
93. J. Lou, R. E. Insignares, Z. Cai, K. S. Ziemer, M. Liu, and N. X. Sun, Appl. Phys. Lett. 91, 182504 (2007).
http://dx.doi.org/10.1063/1.2804123
94.
94. M. Liu, J. Lou, and N. X. Sun, Adv. Funct. Mater. 21, 2593 (2011).
http://dx.doi.org/10.1002/adfm.201002485
95.
95. M. Liu, J. Lou, M. Li, O. Obi, X. Xing, and N. X. Sun, J. Appl. Phys. 109, 07D913 (2011).
http://dx.doi.org/10.1063/1.3561771
96.
96. M. Liu, O. Obi, Z. Cai, J. Lou, G. Yang, K. S. Ziemer, and N. X. Sun, J. Appl. Phys. 107, 073916 (2010).
http://dx.doi.org/10.1063/1.3354104
97.
97. J. Lou, M. Liu, D. Reed, Y. Ren, and N. X. Sun, Adv. Mater. 21, 2536 (2009).
http://dx.doi.org/10.1002/adma.200803439
98.
98. M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K. S. Ziemer, V. G. Harris, and N. X. Sun, Adv. Funct. Mater. 19, 1826 (2009).
http://dx.doi.org/10.1002/adfm.200801907
99.
99. M. Liu, O. Obi, J. Lou, S. Stoute, Z. Cai, K. S. Ziemer, and N. X. Sun, J. Phys. D: Appl. Phys. 42, 045007 (2009).
http://dx.doi.org/10.1088/0022-3727/42/4/045007
100.
100. J. Lou, D. Reed, C. Pettiford, M. Liu, P. Han, S. Dong, and N. X. Sun, Appl. Phys. Lett. 92, 262502 (2008).
http://dx.doi.org/10.1063/1.2952828
101.
101. J. Lou, D. Reed, Y. H. Ren, and N. X. Sun, J. Appl. Phys. 109, 07D731 (2011).
http://dx.doi.org/10.1063/1.3562975
102.
102. A. S. Tatarenko, V. Gheevarughese, G. Srinivasan, O. V. Antonenkov, and M. I. Bichurin, J. Electroceram. 24, 5 (2010).
http://dx.doi.org/10.1007/s10832-007-9382-1
103.
103. A. A. Semenov, S. F. Karmanenko, V. E. Demidov, B. A. Kalinikos, G. Srinivansan, A. N. Slavin, and J. V. Mantese, Appl. Phys. Lett. 88, 033503 (2006).
http://dx.doi.org/10.1063/1.2166489
104.
104. N. X. Sun and G. Srinivasan, SPIN 02, 1240004 (2012).
http://dx.doi.org/10.1142/S2010324712400048
105.
105. K. R. Smith, V. I. Vasyuchka, M. Wu, G. A. Melkov, and C. E. Patton, Phys. Rev. B 76, 054412 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054412
106.
106. E. N. Beginin, S. V. Grishin, M. A. Morozova, and Yu. P. Sharaevsskii, Tech. Phys. Lett. 35, 853 (2009).
http://dx.doi.org/10.1134/S106378500909020X
107.
107. C. Pettiford, S. Dasgupta, J. Lou, S. D. Yoon, and N. X. Sun, IEEE Trans Magn. 43, 3343 (2007).
http://dx.doi.org/10.1109/TMAG.2007.893790
108.
108. X. Yang, J. Wu, S. Beguhn, T. Nan, Y. Gao, Z. Zhou, and N. X. Sun, IEEE Micro. Wireless Comp. Lett. 23, 184 (2013).
http://dx.doi.org/10.1109/LMWC.2013.2247991
109.
109. T. Nan, Y. Hui, M. Rinaldi, and N. X. Sun, Sci. Rep. 3, 1985 (2013).
http://dx.doi.org/10.1038/srep01985
110.
110. G. M. Yang, O. Obi, and N. X. Sun, Microwave Opt. Technol. Lett. 54, 230 (2012).
http://dx.doi.org/10.1002/mop.26490
111.
111. G.-M. Yang, X. Xing, A. Daigle, O. Obi, M. Liu, J. Lou, S. Stoute, K. Naishadham, and N. X. Sun, IEEE Trans. Antennas Propag. 58, 648 (2010).
http://dx.doi.org/10.1109/TAP.2009.2039295
112.
112. G. M. Yang, X. Xing, A. Daigle, O. Obi, M. Liu, S. Stoute, K. Naishadham, and N. X. Sun, IET Proc. Microwaves, Antennas Propag. 4, 1172 (2010).
http://dx.doi.org/10.1049/iet-map.2009.0429
113.
113. G. M. Yang, A. Shrabstein, X. Xing, O. Obi, S. Stoute, M. Liu, J. Lou, and N. X. Sun, IEEE Trans. Magn. 45, 4191 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2023996
114.
114. G. M. Yang, X. Xing, A. Daigle, M. Liu, O. Obi, S. Stoute, K. Naishadham, and N. X. Sun, IEEE Trans. Antennas Propag. 57, 2190 (2009).
http://dx.doi.org/10.1109/TAP.2009.2021972
115.
115. G. M. Yang, X. Xing, A. Daigle, M. Liu, O. Obi, J. W. Wang, K. Naishadham, and N. X. Sun, IEEE Trans. Magn. 44, 3091 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2003062
116.
116. G. M. Yang, A. Daigle, M. Liu, O. Obi, S. Stoute, K. Naishadham, and N. X. Sun, Electron. Lett. 44, 332 (2008).
http://dx.doi.org/10.1049/el:20080200
117.
117. M. W. Cole, E. Ngo, C. Hubbard, S. G. Hirsch, M. Ivill, W. L. Sarney, J. Zhang, and S. P. Alpay, J. Appl. Phys. 114, 080341 (2013).
http://dx.doi.org/10.1063/1.4827421
118.
118. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, and D. Meyners, Nat. Mater. 11, 523 (2012).
http://dx.doi.org/10.1038/nmat3306
119.
119. M. W. Cole, R. C. Toonen, S. G. Hirsch, E. Ngo, R. R. Romanofsky, F. Van Keuls, C. Hubbard, M. Ivill, and D. Demaree, Integrated Ferroelectrics 111, 68 (2009).
http://dx.doi.org/10.1080/10584581003591023
120.
120. R. Liedtke, S. Hoffmann, and R. Waser, J. Am. Ceram. Soc. 83, 436 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01214.x
121.
121. A. S. Bhalla, R. Y. Gao, and R. Roy, Mater. Res. Innovations 4, 3 (2000).
http://dx.doi.org/10.1007/s100190000062
122.
122. B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, IEEE MTT-S Int. Microwave Symp. Dig. 3, 1467 (2002).
123.
123. G. Subramanyam, M. Patterson, K. Leedy, R. Neidhard, C. Varanasi, C. Zhang, and G. Steinhauer, Integr. Ferroelectr. 112, 53 (2010).
http://dx.doi.org/10.1080/10584587.2009.484687
124.
124. M. W. Cole and R. G. Geyer, Mech. Mater. 36, 1017 (2004).
http://dx.doi.org/10.1016/j.mechmat.2003.04.001
125.
125. S. Y. Wang, B. L. Cheng, C. Wang, S. A. T. Redfern, S. Y. Dai, K. J. Jin, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, J. Phys. D: Appl. Phys. 38, 2253 (2005).
http://dx.doi.org/10.1088/0022-3727/38/13/025
126.
126. W. Chang, S. W. Kirchoefer, J. M. Pond, J. S. Horwitz, and L. Sengupta, J. Appl. Phys. 92, 1528 (2002).
http://dx.doi.org/10.1063/1.1491996
127.
127. M. W. Cole, W. D. Nothwang, J. D. Demaree, and S. Hirsch, J. Appl. Phys. 98, 024507 (2005).
http://dx.doi.org/10.1063/1.1977201
128.
128. A. S. Reshmia, P. S. Asha, M. K. Krishnaprasad, M. K. Jayaraj, and M. T. Sebastian, J. Alloys Compd. 509, 6561 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.02.074
129.
129. J. W. Lu and S. Stemmer, Appl. Phys. Lett. 83, 2411 (2003).
http://dx.doi.org/10.1063/1.1613036
130.
130. J. Park, J. W. Lu, S. Stemmer, and R. A. York, J. Appl. Phys. 97, 084110 (2005).
http://dx.doi.org/10.1063/1.1883306
131.
131. A. Podpirka, M. W. Cole, and S. Ramanathan, Appl. Phys. Lett. 92, 212906 (2008).
http://dx.doi.org/10.1063/1.2936305
132.
132. K.-H. Chen, C.-L. Wu, J.-Y. Lin, and C.-M. Cheng, Adv. Mater. Res. 239–242, 1002 (2011).
http://dx.doi.org/10.4028/www.scientific.net/AMR.239-242.1002
133.
133. M. W. Cole, R. C. Toonen, M. Ivill, S. G. Hirsch, E. Ngo, and C. Hubbard, J. Appl. Phys. 110, 124105 (2011).
http://dx.doi.org/10.1063/1.3671642
134.
134. G. Subramanyam, M. Patterson, K. Leedy, R. Neidhard, C. Varanasi, and G. Steinhauer, Integr. Ferroelectr. 125, 11 (2011).
http://dx.doi.org/10.1080/10584587.2011.573995
135.
135. M. W. Cole and S. P. Alpay, in Ferroelectrics - Material Aspects, edited by M. Lallart (InTech, 2011), p. 149, see http://www.intechopen.com/articles/show/title/performance-enhanced-complex-oxide-thin-films-for-temperature-stable-tunable-device-applications-a-m.
136.
136. M. W. Cole, C. V. Weiss, E. Ngo et al., Appl. Phys. Lett. 92, 182906 (2008).
http://dx.doi.org/10.1063/1.2919080
137.
137. M. W. Cole, R. G. Geyer, C. Hubbard, E. Ngo, M. Ervin, M. Wood, and W. Nothwang, Revista Mexicana de Fisica 50, 232 (2004).
138.
138. M. B. Okatan, M. W. Cole, and S. P. Alpay, J. Appl. Phys. 104, 104107 (2008).
http://dx.doi.org/10.1063/1.3026719
139.
139. S. Zhong, S. P. Alpay, M. W. Cole et al., Appl. Phys. Lett. 90, 092901 (2007).
http://dx.doi.org/10.1063/1.2710005
140.
140. X. Zhu, N. Chong, H. L. W. Chan, C. L. Choy, K. H. Wang, Z. Liu et al., Appl. Phys. Lett. 80, 3376 (2002).
http://dx.doi.org/10.1063/1.1475367
141.
141. J. Sigman, P. G. Clem, C. D. Nordquist, J. J. Richardson, and J. T. Dawley, J. Appl. Phys. 102, 054106 (2007).
http://dx.doi.org/10.1063/1.2775922
142.
142. S. Gevorgian, P. K. Petrov, Z. Ivanov, and E. Wikborg, Appl. Phys. Lett. 79, 1861 (2001).
http://dx.doi.org/10.1063/1.1402637
143.
143. W. Chang, J. S. Horwitz, A. C. Carter, J. M. Pond, S. W. Kirchoefer, C. M. Gilmore, and D. B. Chrisey, Appl. Phys. Lett. 74, 1033 (1999).
http://dx.doi.org/10.1063/1.123446
144.
144. M. W. Cole, P. C. Joshi, M. Ervin, M. Wood, and R. L. Pfeiffer, J. Appl. Phys. 92, 3967 (2002).
http://dx.doi.org/10.1063/1.1505999
145.
145. S. B. Qadri, J. S. Horwitz, D. B. Chrisey, R. C. Y. Auyeung, and K. S. Grabowski, Appl. Phys. Lett. 66, 1605 (1995).
http://dx.doi.org/10.1063/1.113866
146.
146. W. J. Kim, W. Chang, S. B. Qadri, J. M. Pond, S. W. Kirchorfer, D. B. Chrisey, and J. S. Horwitz, Appl. Phys. Lett. 76, 1185 (2000).
http://dx.doi.org/10.1063/1.125977
147.
147. E. J. Cukauskas, S. W. Kirchoefer, and J. M. Pond, J. Appl. Phys. 88, 2830 (2000).
http://dx.doi.org/10.1063/1.1289052
148.
148. Y. Gim, T. Hudson, Y. Fan, C. Kwon, A. T. Findikoglu, B. J. Gibbons, B. H. Park, and Q. X. Jia, Appl. Phys. Lett. 77, 1200 (2000).
http://dx.doi.org/10.1063/1.1289272
149.
149. H. Yue, D. Brown, G. Subramanyam, K. Leedy, and C. Cerny, paper presentation in the 2013 IEEE International Symposium on Applications of Ferroelectrics (ISAF 2013).
150.
150. H. Koinuma, “Why crystal engineering of oxides,” MRS Bulletin 19, 2122 (1994).
151.
151. S. Jin, M. McCormack, T. H. Tiefel, and R. Ramesh, J. Appl. Phys. 76, 6929 (1994).
http://dx.doi.org/10.1063/1.358119
152.
152. X. D. Wu, R. C. Dye, R. E. Muenchausen, S. R. Foltyn, M. Maley, A. D. Rollett, A. R. Garcia, and N. S. Nogar, Appl. Phys. Lett. 58, 2165 (1991).
http://dx.doi.org/10.1063/1.104994
153.
153. J. C. Jiang, X. Q. Pan, and C. L. Chen, Appl. Phys. Lett. 72, 909 (1998).
http://dx.doi.org/10.1063/1.120870
154.
154. J. C. Jiang and X. Q. Pan, J. Appl. Phys. 89, 6365 (2001).
http://dx.doi.org/10.1063/1.1368160
155.
155. C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, Appl. Phys. Lett. 72, 2817 (1998).
http://dx.doi.org/10.1063/1.121468
156.
156. X. Q. Pan, J. C. Jiang, C. D. Theis, and D. G. Schlom, Appl. Phys. Lett. 83, 2315 (2003).
http://dx.doi.org/10.1063/1.1611277
157.
157. Y. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan, J. C. Jiang, and X. Q. Pan, J. Appl. Phys. 89, 1387 (2001).
http://dx.doi.org/10.1063/1.1334641
158.
158. J. C. Jiang, Y. Lin, C. L. Chen, C. W. Chu, and E. I. Meletis, J. Appl. Phys. 91, 3188 (2002).
http://dx.doi.org/10.1063/1.1446221
159.
159. C. L. Chen, H. H. Feng, Z. Zhang, A. Brazdeikis, F. A. Miranda, F. W. Van Kewls, R. R. Romanofsky, Z. J. Huang, Y. Liou, W. K. Chu, and C. W. Chu, Appl. Phys. Lett. 75, 412 (1999).
http://dx.doi.org/10.1063/1.124392
160.
160. Z. Yuan, Y. Lin, J. Weaver, X. Chen, C. L. Chen, G. Subramanyam, J. C. Jiang, and E. I. Meletis, Appl. Phys. Lett. 87, 152901 (2005).
http://dx.doi.org/10.1063/1.2089181
161.
161. M. Liu, C. R. Ma, G. Collins, J. Liu, C. L. Chen, L. Shui, H. Wang, C. Dai, Y. Lin, J. He, J. C. Jiang, E. I. Meletis, and Q. Y. Zhang, Cryst. Growth Des. 10, 4221 (2010).
http://dx.doi.org/10.1021/cg1006132
162.
162. J. He, J. C. Jiang, E. I. Meletis, M. Liu, G. Collins, C. R. Ma, C. L. Chen, and A. Bhalla, Integr. Ferroelectr. 131, 72 (2011).
http://dx.doi.org/10.1080/10584587.2011.621054
163.
163. J. He, J. C. Jiang, M. Liu, J. Liu, G. Collins, C. R. Ma, C. L. Chen, A. Bhalla, and E. I. Meletis, Philos. Mag. Lett. 91, 361 (2011).
http://dx.doi.org/10.1080/09500839.2011.562249
164.
164. J. He, J. C. Jiang, E. I. Meletis, J. Liu, G. Collins, C. L. Chen, and A. Bhalla, Philos. Mag. Lett. 89, 493 (2009).
http://dx.doi.org/10.1080/09500830903092381
165.
165. G. Y. Wang, S. W. Liu, T. Wu, X. G. Luo, C. H. Wang, J. C. Jiang, X. H. Chen, and C. L. Chen, Solid State Commun. 144, 454 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.09.014
166.
166. J. C. Jiang, E. I. Meletis, C. L. Chen, Y. Lin, Z. Zhang, and W. K. Chu, Philos. Mag. Lett. 84, 443 (2004).
http://dx.doi.org/10.1080/09500830410001726996
167.
167. T. Hungria, J. Galy, and A. Castro, Adv. Eng. Mater. 11, 615 (2009).
http://dx.doi.org/10.1002/adem.200900052
168.
168. C. H. Lee, N. D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J. A. Mundy, L. F. Kourkoutis, Y. Nie, M. D. Biegalski, J.-S. Zhang, M. Bernhagen, N. A. Bedenek, Y. Kim, J. D. Brock, R. Uecker, X. X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D. A. Muller, I. Takeuchi, J. C. Booth, C. J. Fennie, and D. G. Schlom, Nature 502, 532 (2013).
http://dx.doi.org/10.1038/nature12582
169.
169. J. C. Jiang, X. Q. Pan, W. Tian, C. D. Theis, and D. G. Schlom, Appl. Phys. Lett. 74, 2851 (1999).
http://dx.doi.org/10.1063/1.124035
170.
170. I. Bozovic, G. Logvenov, I. Belca, B. Narimbetov, and I. Sveklo, Phys. Rev. Lett. 89, 107001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.107001
171.
171. M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y. J. Shan, and T. Nakamura, Phys. Rev. Lett. 82, 3540 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3540
172.
172. M. Liu, C. R. Ma, G. Collins, J. Liu, C. L. Chen, C. Dai, Y. Lin, L. Shui, H. Wang, J. He, J. C. Jiang, E. I. Meletis, Q. Y. Zhang, and M. W. Cole, Appl. Mater. Interfaces 4, 5761 (2012).
http://dx.doi.org/10.1021/am301066u
173.
173. J. C. Jiang, E. I. Meletis, L. L. Henry, K. I. Gnanasekar, and C. L. Chen, Nano Lett. 4, 741 (2004).
http://dx.doi.org/10.1021/nl049947f
174.
174. J. He, J. C. Jiang, J. Liu, M. Liu, G. Collins, C. R. Ma, C. L. Chen, and E. I. Meletis, Thin Solid Films 519, 4371 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.02.015
175.
175. M. Liu, J. Liu, C. Ma, G. Collins, C. L. Chen, A. D. Alemayehu, G. Subramanyam, J. He, J. Jiang, E. I. Meletis, and A. Bhalla, Cryst. Eng. Comm. 15(34), 6641 (2013).
http://dx.doi.org/10.1039/c3ce27106d
176.
176. J. Lou, J. Wu, M. Liu, G. Wen, Y. Jin, and N. X. Sun, in IEEE Microwave Symposium (IMS) (2011), p. 1.
177.
177. N. Li, M. Liu, Z. Zhou, N. X. Sun, D. V. B. Murthy, G. Srinivasan, T. M. Klein, V. M. Petrov, and A. Gupta, Appl. Phys. Lett. 99, 192502 (2011).
http://dx.doi.org/10.1063/1.3658900
178.
178. O. Obi, M. Liu, J. Lou, S. Stoute, X. Xing, N. X. Sun, J. Warzywoda, A. Sacco, Jr., D. E. Oates, and G. F. Dionne, J. Appl. Phys. 109, 07E527 (2011).
http://dx.doi.org/10.1063/1.3562879
179.
179. F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press, Oxford, New York, 1962).
180.
180. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer-Verlag, Berlin, Heidelberg, 1998).
181.
181. G. A. Rossetti, Jr., “Thermodynamic theory,” in Piezoelectricity: Evolution and Future of a Technology, edited by W. Heywang, K. Lubitz, and W. Wersing (Springer-Verlag, Berlin, 2008), pp. 493516.
182.
182. Z.-G. Ban and S. P. Alpay, J. Appl. Phys. 93, 504 (2003).
http://dx.doi.org/10.1063/1.1524310
183.
183. Z.-G. Ban and S. P. Alpay, J. Appl. Phys. 91, 9288 (2002).
http://dx.doi.org/10.1063/1.1473675
184.
184. J. Zhang, M. W. Cole, and S. P. Alpay, J. Appl. Phys. 108, 054103 (2010).
http://dx.doi.org/10.1063/1.3475482
185.
185. J. Zhang, C. V. Weiss, and S. P. Alpay, Appl. Phys. Lett. 99, 042902 (2011).
http://dx.doi.org/10.1063/1.3617430
186.
186. A. L. Roytburd, S. Zhong, and S. P. Alpay, Appl. Phys. Lett. 87, 092902 (2005).
http://dx.doi.org/10.1063/1.2032601
187.
187. S. Zhong, S. P. Alpay, and J. V. Mantese, Appl. Phys. Lett. 88, 132904 (2006).
http://dx.doi.org/10.1063/1.2189909
188.
188. A. F. Devonshire, Philos. Mag. 40, 1040 (1949).
189.
189. A. F. Devonshire, Philos. Mag. 42, 1065 (1951).
190.
190. A. J. Bell and L. E. Cross, Ferroelectrics 59, 197 (1984).
http://dx.doi.org/10.1080/00150198408240090
191.
191. A. J. Bell, J. Appl. Phys. 89, 3907 (2001).
http://dx.doi.org/10.1063/1.1352682
192.
192. Y. L. Li, L. E. Cross, and L. Q. Chen, J. Appl. Phys. 98, 064101 (2005).
http://dx.doi.org/10.1063/1.2042528
193.
193. Y. L. Wang, A. K. Tagantsev, D. Damjanovic, N. Setter, V. K. Yarmarkin, A. I. Sokolov, and I. A. Lukyanchuk, J. Appl. Phys. 101, 104115 (2007).
http://dx.doi.org/10.1063/1.2733744
194.
194. J. J. Wang, P. P. Wu, X. Q. Ma, and L. Q. Chen, J. Appl. Phys. 108, 114105 (2010).
http://dx.doi.org/10.1063/1.3504194
195.
195. V. E. Yurkevich and B. N. Rolov, Phys. Status Solidi B 52, 335 (1972).
http://dx.doi.org/10.1002/pssb.2220520136
196.
196. V. E. Yurkevich and B. N. Rolov, Phys. Status Solidi B 52, 683 (1972).
http://dx.doi.org/10.1002/pssb.2220520239
197.
197. G. A. Rossetti, Jr., A. G. Khachaturyan, G. Akcay, and Y. Ni, J. Appl. Phys. 103, 114113 (2008).
http://dx.doi.org/10.1063/1.2930883
198.
198. A. A. Heitmann and G. A. Rossetti, Jr., Philos. Mag. 90, 7187 (2010).
http://dx.doi.org/10.1080/14786430902897750
199.
199. A. A. Heitmann and G. A. Rossetti, Jr., Integr. Ferroelectr. 126, 155165 (2011).
http://dx.doi.org/10.1080/10584587.2011.575018
200.
200. V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov, and E. A. Tarakanov, Phys. Rev. B 54, 3151 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.3151
201.
201. G. M. Yang, R. Jin, G. Xiao, C. Vittoria, V. G. Harris, and N. X. Sun, IEEE Trans. Antennas Propag. 57, 256 (2009).
http://dx.doi.org/10.1109/TAP.2008.2009744
202.
202. L. Q. Chen, J. Am. Ceram. Soc. 91(6), 1835 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02413.x
203.
203. J. X. Zhang, Y. L. Li, D. G. Schlom, L. Q. Chen, F. Zavaliche, R. Ramesh, and Q. X. Jia, Appl. Phys. Lett. 90, 052909 (2007).
http://dx.doi.org/10.1063/1.2431574
204.
204. Y. Ni and A. G. Khachaturyan, J. Appl. Phys. 102, 113506 (2007).
http://dx.doi.org/10.1063/1.2817475
205.
205. J. M. Hu, G. Sheng, J. X. Zhang, C. W. Nan, and L. Q. Chen, J. Appl. Phys. 109, 123917 (2011).
http://dx.doi.org/10.1063/1.3600203
206.
206. J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, Adv. Mater. 24(21), 2869 (2012).
http://dx.doi.org/10.1002/adma.201201004
207.
207. J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, Nat. Commun. 2, 553 (2011).
http://dx.doi.org/10.1038/ncomms1564
208.
208. Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Acta Mater. 50, 395 (2002).
http://dx.doi.org/10.1016/S1359-6454(01)00360-3
209.
209. A. Bueno-Orovio, V. M. Perez-Garcia, and F. H. Fenton, SIAM J. Sci. Comput. 28, 886 (2006).
http://dx.doi.org/10.1137/040607575
210.
210. K. Dayal and K. Bhattacharya, Acta Mater. 55, 1907 (2007).
http://dx.doi.org/10.1016/j.actamat.2006.10.049
211.
211. L. Yang and K. Dayal, J. Comput. Phys. 230, 7821 (2011).
http://dx.doi.org/10.1016/j.jcp.2011.07.001
212.
212. M. El-Naggar, K. Dayal, D. Goodwin, and K. Bhattacharya, J. Appl. Phys. 100, 114115 (2006).
http://dx.doi.org/10.1063/1.2369650
213.
213. L. Yang and K. Dayal, Int. J. Fract. 174, 17 (2012).
http://dx.doi.org/10.1007/s10704-011-9670-2
214.
214. L. Yang and K. Dayal, J. Appl. Phys. 111, 014106 (2012).
http://dx.doi.org/10.1063/1.3674320
215.
215. L. Yang and K. Dayal, Acta Mater. 60(19), 6457 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.07.050
216.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/19/10.1063/1.4827019
Loading
/content/aip/journal/jap/114/19/10.1063/1.4827019
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/19/10.1063/1.4827019
2013-11-15
2014-07-31

Abstract

There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/19/1.4827019.html;jsessionid=4rl92h7fhd8hd.x-aip-live-02?itemId=/content/aip/journal/jap/114/19/10.1063/1.4827019&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/19/10.1063/1.4827019
10.1063/1.4827019
SEARCH_EXPAND_ITEM