1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The effect of a thermal gradient on the electromigration-driven surface morphological stabilization of an epitaxial thin film on a compliant substrate
Rent:
Rent this article for
USD
10.1063/1.4812289
/content/aip/journal/jap/114/2/10.1063/1.4812289
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/2/10.1063/1.4812289
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Schematic depiction of a heteroepitaxial conducting thin film on a finite-thickness compliant substrate subjected to an external electric field and a thermal gradient . (a) Initial configuration of the heteroepitaxial film/substrate system with a planar film surface morphology. (b) Top view of the epitaxial thin film surface; the directions of the two externally applied fields are shown with respect to the FSDD. The directions in the schematic of (b) are chosen to aid visually in defining the misorientation angles, and . In the analysis, the applied field directions are taken to be generally arbitrary.

Image of FIG. 2.
FIG. 2.

Polar plots on the surface plane of the anisotropy function of the surface diffusivity tensor in the absence of any externally applied fields. The thin dashed line (circle) corresponds to isotropic surface diffusion, while the thick dashed lines mark the symmetry axes of the fcc film surface that correspond to fast surface diffusion directions. The number of symmetry axes is given by the parameter of . (a)  = 1, (b)  = 2, and (c)  = 3. In all cases, the value of the anisotropy strength parameter of is  = 12.

Image of FIG. 3.
FIG. 3.

Polar plots on the surface plane of the anisotropy function of the surface diffusivity tensor under the simultaneous action of the applied electric and thermal fields of Fig. 1 . The solid and dashed arrows indicate the directions of the applied electric and thermal fields, respectively. The anisotropy parameters are (a, d, g)  = 1, (b, e, h)  = 2, and (c, f, i)  = 3, while  = 12 in all cases (a)-(i). (a)–(c) Only an electric field is applied, i.e., , and . (d)–(f) Both an electric and a thermal field are applied with equal strengths, , , and . (g)–(i) Both an electric and a thermal field are applied with different strengths, , , and . In cases (d)-(i), the effective angle, , is calculated from Eqs. (7) and (8) .

Image of FIG. 4.
FIG. 4.

(a) Heteroepitaxial film/substrate system configuration with a plane-wave perturbation introduced into the thin film's surface morphology; the amplitude of the perturbation has been magnified for clarity. (b) An example of alignment of the externally applied fields with the direction of the temperature gradient and the FSDD coinciding with the -axis.

Image of FIG. 5.
FIG. 5.

Determination of the synergy or competition of the two externally applied fields for all their possible orientations on the surface. The surface plots (a), (c), and (e) show the dependence of the field synergy/competition parameter, , on the directions of the applied electric and thermal fields, as determined by the misorientation angles and , respectively; (a)  = 1, (c)  = 2, and (e)  = 3. The corresponding contour plots are shown in (b), (d), and (f) for  = 1, 2, and 3, respectively. In all cases, dark and light shading indicate negative and positive values of the parameter , respectively, i.e., competition and synergy, respectively, of the two externally applied fields. The values of the parameters used are  = 1,  = 12, and Θ = 1.

Image of FIG. 6.
FIG. 6.

Dispersion relations giving the dependence, according to Eq. (52b) , of the characteristic rate, , for the growth or decay of the perturbation from the planar film surface morphology on the dimensionless wave number of the perturbation for Ξ =  , , and , (dashed, solid, and dotted line, respectively), where is the dimensionless critical strength of the applied electric field for stabilization of the planar morphology of the epitaxial film surface. The values of the parameters used are Θ = 1,  = 0,  = 1, and and the substrate is compliant.

Image of FIG. 7.
FIG. 7.

Dependence of the dimensionless critical electric-field strength, , on the misorientation angle, , for a thermal gradient that is applied parallel to the Cartesian -axis, , and at an angle with respect to the -axis (inset). The values of the parameters used are Θ = 1,  = 1, and , and the substrate is compliant. In both cases, the minimum is exhibited at , determining an optimal direction for the application of the external electric field, .

Image of FIG. 8.
FIG. 8.

Dependence of the dimensionless critical electric-field strength on the surface diffusional anisotropy strength for crystallographic orientations of the film plane corresponding to symmetry parameter values  = 1, 2, and 3. The values of the parameters used are Θ = 1,  = 1, and and the substrate is compliant. The electric field is applied at angles , , and , i.e., their optimal values for surface stabilization for each crystallographic orientation.

Image of FIG. 9.
FIG. 9.

Dependence of the range of unstable wave numbers, , on the dimensionless electric-field strength Ξ with (dashed lines) and without (solid lines) the simultaneous action of the thermal field for (a) an infinitely thick and rigid substrate (thick black lines) and a finite-thickness substrate with clamped onto a rigid holder (thin gray lines) and (b) for a thin compliant substrate with . The inset in (b) shows the ) dependence for the optimal compliant-substrate case for . Thevalues of the parameters used are Θ = 1,  = 1, , and .

Loading

Article metrics loading...

/content/aip/journal/jap/114/2/10.1063/1.4812289
2013-07-08
2014-04-19
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The effect of a thermal gradient on the electromigration-driven surface morphological stabilization of an epitaxial thin film on a compliant substrate
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/2/10.1063/1.4812289
10.1063/1.4812289
SEARCH_EXPAND_ITEM