1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Numerical investigation of the plasma-aided fabrication of stoichiometric InAs nanodots at early stage of the growth
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/2/10.1063/1.4813116
1.
1. B. L. Liang, Z. M. Wang, Yu. I. Mazur, G. J. Salamo, E. A. Decuir, Jr., and M. O. Manasreh, Appl. Phys. Lett. 89, 043125 (2006).
http://dx.doi.org/10.1063/1.2243865
2.
2. L. M. Fraas, G. R. Girard, J. E. Avery, B. A. Arau, V. S. Sundaram, A. G. Thompson, and J. M. Gee, J. Appl. Phys. 66, 3866 (1989).
http://dx.doi.org/10.1063/1.344051
3.
3. C. R. Bolognesi, J. D. Werking, E. J. Caine, H. Kroemer, and E. L. Hu, IEEE Electron Device Lett. 14, 13 (1993).
http://dx.doi.org/10.1109/55.215085
4.
4. B. Cakmak, Opt. Express 10, 530 (2002).
http://dx.doi.org/10.1364/OE.10.000530
5.
5. M. Walther, R. Rehm, F. Fuchs, J. Schmitz, J. Flei, W. Cabanski, D. Eich, M. Finck, W. Rode, J. Wendler, R. Wollrab, and J. Ziegler, J. Electron. Mater. 34, 722 (2005).
http://dx.doi.org/10.1007/s11664-005-0010-z
6.
6. A. Trampert, E. Tournie, and K. H. Ploog, J. Cryst. Growth 146, 368 (1995).
http://dx.doi.org/10.1016/0022-0248(94)00535-4
7.
7. S. E. Hooper, D. I. Westwood, D. A. Woolf, S. S. Heghoyan, and R. H. Williams, Semicond. Sci. Technol. 8, 1069 (1993).
http://dx.doi.org/10.1088/0268-1242/8/6/013
8.
8. S. Kalem, J. Appl. Phys. 66, 3097 (1989).
http://dx.doi.org/10.1063/1.344141
9.
9. S. Kalem, Semicond. Sci. Technol. 5, S200 (1990).
http://dx.doi.org/10.1088/0268-1242/5/3S/044
10.
10. Z. M. Fang, K. Y. Ma, R. M. Cohen, and G. B. Stringfellow, Appl. Phys. Lett. 59, 1446 (1991).
http://dx.doi.org/10.1063/1.105283
11.
11. H. Naoi, D. M. Shaw, G. J. Collins, and S. Sakai, J. Cryst. Growth 219, 481(2000).
http://dx.doi.org/10.1016/S0022-0248(00)00769-7
12.
12. H. H. Zhan, R. N. Notzel, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, J. Cryst. Growth 251, 135 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02469-7
13.
13. J. Shi, K. Zhu, W. Yao, and L. Zhang, J. Cryst. Growth 186, 480 (1998).
http://dx.doi.org/10.1016/S0022-0248(97)00820-8
14.
14. P. Thilakan, Z. Iqbal kazi, and T. Igawa, Appl. Surf. Sci. 191, 196 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00183-6
15.
15. T. Alzoubi, M. Usman, M. Benyoucef, and J. P. Reithmaier, J. Cryst. Growth 323, 422 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.11.170
16.
16. M. Innocenti, F. Forni, G. Pezzatini, R. Raiteri, F. Loglio, and M. L. Foresti, J. Electroanal. Chem. 514, 75 (2001).
http://dx.doi.org/10.1016/S0022-0728(01)00620-9
17.
17. F. A. Reboredo, L. Pizzagalli, and G. Galli, Nano Lett. 4, 801 (2004).
http://dx.doi.org/10.1021/nl049876k
18.
18. A. E. Rider, I. Levchenko, and K. Ostrikov, J. Appl. Phys. 101, 044306 (2007).
http://dx.doi.org/10.1063/1.2433752
19.
19. A. E. Rider and K. Ostrikov, Surf. Sci. 603, 359 (2009).
http://dx.doi.org/10.1016/j.susc.2008.11.030
20.
20. K. Ostrikov, Rev. Mod. Phys. 77, 489 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.489
21.
21. I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, Appl. Phys. Lett. 93, 183102 (2008).
http://dx.doi.org/10.1063/1.3012572
22.
22. K. Ostrikov, I. Levchenko, and S. Xu, Pure Appl. Chem. 80, 1909 (2008).
http://dx.doi.org/10.1351/pac200880091909
23.
23. H. Mehdipour and G. Foroutan, Phys. Plasmas 17, 083704 (2010).
http://dx.doi.org/10.1063/1.3480099
24.
24. I. Denysenko and K. Ostrikov, J. Phys. D: Appl. Phys. 42, 015208 (2009).
http://dx.doi.org/10.1088/0022-3727/42/1/015208
25.
25. H. Mehdipour and K. Ostrikov, J. Am. Chem. Soc. 135, 1912 (2013).
http://dx.doi.org/10.1021/ja3110279
26.
26. G. Foroutan, H. Mehdipour, and H. Zahed, Phys. Plasmas 16, 103703 (2009).
http://dx.doi.org/10.1063/1.3243497
27.
27. B. P. Pandey, A. Samarian, and S. V. Vladimirov, Phys. Plasmas 14, 093703 (2007).
http://dx.doi.org/10.1063/1.2773707
28.
28. R. Chodura, Phys. Fluids 25, 1628 (1982).
http://dx.doi.org/10.1063/1.863955
29.
29. H. Kersten, H. Deutsch, H. Steffen, G. M. W. Kroesen, and R. Hippler, Vaccum 63, 385 (2001).
http://dx.doi.org/10.1016/S0042-207X(01)00350-5
30.
30. F. Gibou, C. Ratsch, and R. Caflisch, Phys. Rev. B 67, 155403 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155403
31.
31. CRC Handbook of Chemistry and Physics, Internet Version, Sec. 12, 87th ed., edited by D. R. Lide (Taylor and Francis, Boca Raton, FL, 2007).
32.
32. J. D. Gale and J. M. Seddon, Thermodynamics and Statistical Mechanics (Wiley-Interscience, New York, 2002).
33.
33. C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, 1996).
34.
34. F. Rosei, J. Phys.: Condens. Matter 16, S1373 (2004).
http://dx.doi.org/10.1088/0953-8984/16/17/001
35.
35. Q. Cheng, S. Xu, J. Long, and K. Ostrikov, Appl. Phys. Lett. 90, 173112 (2007).
http://dx.doi.org/10.1063/1.2731728
36.
36. S. Y. Huang, Q. J. Cheng, S. Xu, D. Y. Wei, H. P. Zhou, J. D. Long, I. Levchenko, and K. Ostrikov, J. Appl. Phys. 111, 036101 (2012).
http://dx.doi.org/10.1063/1.3673593
37.
37. M. Lu, X. J. Yang, S. S. Perry, and J. W. Rabalais, Appl. Phys. Lett. 80, 2096 (2002).
http://dx.doi.org/10.1063/1.1464222
38.
38. K. Paredis, K. Vanormelingen, and A. Vantomme, Appl. Phys. Lett. 92, 043111 (2008).
http://dx.doi.org/10.1063/1.2838737
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/2/10.1063/1.4813116
Loading
/content/aip/journal/jap/114/2/10.1063/1.4813116
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/2/10.1063/1.4813116
2013-07-08
2014-09-02

Abstract

Using numerical modeling of the plasma sheath and key surface processes, the plasma-aided fabrication of InAs nanodots is investigated at early stage of the growth. Roles of different plasma process parameters, such as electron temperature, electron number density, and ion-to-electron density ratio, in achieving the stoichiometric growth of the nanodots are explored and conditions to achieve a highly stoichiometric InAs composition are discussed. It is shown that the nanodots get larger with increasing the electron temperature and electron number density, whereas they shrink in size with increasing the ion-to-electron density ratio. Moreover, it is shown that with increase in the electron temperature and electron number density stoichiometric saturation state can be reached shortly, which this enables the fabrication of highly stoichiometric array of nanodots within shorter processing time. The results obtained can open a path toward nucleation and growth of an array of nanodots with desired structural composition and size distribution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/2/1.4813116.html;jsessionid=1ntnpapg8biai.x-aip-live-03?itemId=/content/aip/journal/jap/114/2/10.1063/1.4813116&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Numerical investigation of the plasma-aided fabrication of stoichiometric InAs nanodots at early stage of the growth
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/2/10.1063/1.4813116
10.1063/1.4813116
SEARCH_EXPAND_ITEM