Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “ Laser-generated ultrasound: Its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329348 (1993).
2. L. F. R. Rose, “ Point-source representation for laser-generated ultrasound,” J. Acoust. Soc. Am. 75, 723732 (1984).
3. L. F. Bresse and D. A. Hutchins, “ Transient generation by a wide thermoelastic source at a solid surface,” J. Appl. Phys. 65, 14411446 (1989).
4. D. A. Hutchins, “ Ultrasonic generation by pulsed lasers,” in Physical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic Press, New York, 1988), Vol. XVIII, p. 21.
5. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “ Laser generation of ultrasound in metals,” in Research Techniques in Nondestructive Testing (Academic Press, New York, 1982), Vol. V, pp. 281327.
6. B. Castagnede and Y. Berthelot, “ Photoacoustic interactions by modulation of laser impact; Applications in mechanics and physics of anisotropic solids,” J. Acoust. 5, 417453 (1992), available at
7. L. Wu, J. C. Chen, and S. -Y Zhang, “ Mechanisms of laser-generated ultrasound in plates,” J. Phys. D: Appl. Phys. 28, 957964 (1995).
8. S. Fassbender, B. Hoffmann, and W. Arnold, “ Efficient generation of acoustic pressure waves by short laser pulses,” Mater. Sci. Eng. A 122, 3741 (1989).
9. A. Hoffmann and W. Arnold, “ Modeling of the ablation source in laser-ultrasonics,” AIP Conf. Proc. 509, 279286 (2000).
10. V. Gusev, A. A. Kolomenskii, and P. Hess, “ Effect of melting on the excitation of surface acoustic wave pulses by UV nanosecond laser pulses in silicon,” Appl. Phys. A 61, 285298 (1995).
11. M. Mesaros, O. E. Martinez, G. M. Bilmes, and J. O. Tocho, “ Acoustic detection of laser induced melting of metals,” J. Appl. Phys. 81, 10141016 (1997).
12. S. J. Reese, Z. N. Utegulov, F. Farzbod, R. S. Schley, and D. H. Hurley, “ Examination of the epicentral waveform for laser ultrasound in the melting regime,” Ultrasonics 53, 799802 (2013).
13. R. D. Larrabee, “ The spectral emissivity and optical properties of tungsten,” Technical Report 328, Research Laboratory of Electronics, MIT, May 21, 1957.
17. R. Cerny and P. Prikryl, “ A computational model of laser-induced melting and solidification with density change,” Comput. Phys. Commun. 73, 179191 (1992).
18. H. M. Lu and Q. Jiang, “ Melting volume changes of different crystalline lattices,” Phys. Status Solidi B 241, 24722476 (2004).
19. J. E. Parrott and A. D. Stuckes, Thermal Conductivity of Solids (Pion, London, 1975).
20. J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations (SIAM, Philadelphia, 2004).
21. J. F. Botha and G. F. Pinder, Fundamental Concepts in the Numerical Solution of Differential Equations (John Wiley, 1983).
22. V. N. Tokarev and A. F. H. Kaplan, “ An analytical modeling of time dependent pulsed laser melting,” J Appl. Phys. 86, 28362846 (1999).
23. S. L. Sobolev, “ Two-temperature Stefan problem,” Phys. Lett. A 197, 243246 (1995).
24. K. Mastanaiah, “ On the numerical solution of phase change problems in transient non-linear heat conduction,” Int. J. Numer. Methods Eng. 10, 833844 (1976).
25. A. G. Every, “ The elastic properties of solids: Static and dynamic principles,” in Handbook of Solids, Liquids, and Gases, edited by M. Levy, H. E. Bass, and R. R. Stern (Academic Press, San Diego, 2001), Vol. I, Chap. 1, pp. 336.
26. K. L. Telschow and R. J. Conant, “ Optical and thermal parameter effects on laser generated ultrasound,” J. Acoust. Soc. Am. 88, 14941502 (1990).
27. P. A. Doyle, “ On epicentral waveforms for laser-generated ultrasound,” J. Phys. D: Appl. Phys. 19, 16131623 (1986).
28. F. A. McDonald, “ On the precursor in laser-generated ultrasound waveforms in metals,” Appl. Phys. Lett. 56, 230232 (1990).
29. I. A. Veres, Ultrasonics 50(3), 431438 (2010).
30. G. Grimvall, M. Thiessen, and A. F. Guillermet, “ Thermodynamic properties of tungsten,” Phys. Rev. B 36, 78167826 (1987).
31. R. S. Hixson and M. A. Winkler, “ Thermophysical properties of solid and liquid tungsten,” Int. J. Thermophys. 11, 709718 (1990).
32. E. Fraizier, M.-H. Nadal, and R. Oltra, “ Noncontact determination of the elastic moduli of β-Sn up and through the melting point,” J. Appl. Phys. 93, 649654 (2003).
33. M.-H. Nadal, C. Hubert, and R. Oltra, “ High temperature shear modulus determination using a laser-ultrasonic surface acoustic-wave device,” J. Appl. Phys. 106, 0249061 (2009).
34. C.-K. Jen, J.-W. Liaw, T.-F. Chen, A. Moreau, J.-P. Monchalin, and C.-C. Yang, “ Ultrasonic evaluation of semi-solid metals during processing,” Meas. Sci. Technol. 11, 15701575 (2000).
35. L. M. Lyamshev and L. V Sedov, “ Optical generation of sound in a liquid; thermal mechanism (review),” Sov. Phys. Acoust. 27(1), 418 (1981)
35. L. M. Lyamshev and L. V Sedov [Akust. Zh. 27, 529 (1981) (in Russian)].
36. L. Knopoff, “ Surface motions of a thick plate,” J. Appl. Phys. 29, 661670 (1958).
37. Y.-H. Pao, R. R. Gajewski, and A. N. Ceranoglu, “ Acoustic emission and transient waves in an elastic plate,” J. Acoust. Soc. Am. 65, 96105 (1979).
38. Y.-H. Pao and R. R. Gajewski, “ The generalized ray theory and transient responses of layered elastic solids,” in Physical Acoustics, edited by W. P. Mason (Academic Press, New York, 1977), Vol. XIII, Chap. 6, pp. 183265.
39. A. N. Ceranoglu and Y.-H. Pao, “ Propagation of elastic pulses and acoustic emission in a plate,” J. Appl. Mech. - Trans ASME 48(1), 125132 (1981).
40. A. G. Every and K. Y. Kim, “ Time domain dynamic response functions of elastically anisotropic solids,” J. Acoust. Soc. Am. 95, 25052516 (1994).
41. K. Aki and P. G. Richards, Quantitative Seismology (University Science Books, Sausalito, 2002).

Data & Media loading...


Article metrics loading...



An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green's functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12 mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshold.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd