Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/22/10.1063/1.4842096
1.
1. B. Ozpineci and L. Tolbert, “ Silicon carbide: smaller, faster, tougher,” IEEE Spectrum 48(10), 45 (2011).
http://dx.doi.org/10.1109/MSPEC.2011.6027247
2.
2. A. Fontserè, A. Pérez-Tomás, M. Placidi, J. Llobet, N. Baron, S. Chenot, Y. Cordier, J. C. Moreno, M. R. Jennings, P. M. Gammon, C. A. Fisher, V. Iglesias, M. Porti, A. Bayerl, M. Lanza, and M. Nafría, Nanotechnology 23, 395204 (2012).
http://dx.doi.org/10.1088/0957-4484/23/39/395204
3.
3. M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).
http://dx.doi.org/10.1063/1.109775
4.
4. N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, and T. Jimbo, Solid-State Electron. 48(5), 689 (2004).
http://dx.doi.org/10.1016/j.sse.2003.07.006
5.
5. P. M. Smith, IEEE Trans. Microwave Theory Tech. 44(12), 2328 (1996).
http://dx.doi.org/10.1109/22.554545
6.
6. D. Defives, O. Noblanc, C. Dua, C. Brylinski, M. Barthula, and F. Meyer, Mater. Sci. Eng., B 61, 395 (1999).
http://dx.doi.org/10.1016/S0921-5107(98)00541-8
7.
7. K.-Y. Lee and Y.-H. Huang, IEEE Trans. Electron Devices 59, 694 (2012).
http://dx.doi.org/10.1109/TED.2011.2181391
8.
8. B. J. Skromme, E. Luckowski, K. Moore, M. Bhatnagar, C. E. Weitzel, T. Gehoski, and D. Ganser, J. Electron. Mater. 29, 376 (2000).
http://dx.doi.org/10.1007/s11664-000-0081-9
9.
9. L. Calcagno, A. Ruggiero, F. Roccaforte, and F. La Via, J. Appl. Phys. 98, 023713 (2005).
http://dx.doi.org/10.1063/1.1978969
10.
10. M. E. Aydin, N. Yildirim, and A. Turut, J. Appl. Phys. 102, 043701 (2007).
http://dx.doi.org/10.1063/1.2769284
11.
11. I. Nikitina, K. Vassilevski, A. Horsfall, N. Wright, A. G. O'Neill, S. K. Ray, K. Zekentes, and C. M. Johnson, Semicond. Sci. Technol. 24, 055006 (2009).
http://dx.doi.org/10.1088/0268-1242/24/5/055006
12.
12. X. Ma, P. Sadagopan, and T. S. Sudarshan, Phys. Status Solidi A 203, 643 (2006).
http://dx.doi.org/10.1002/pssa.200521017
13.
13. F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, and E. Zanoni, J. Appl. Phys. 93, 9137 (2003).
http://dx.doi.org/10.1063/1.1573750
14.
14. L. Boussouar, Z. Ouennoughi, N. Rouag, A. Sellai, R. Weiss, and H. Ryssel, Microelectron. Eng. 88, 969 (2011).
http://dx.doi.org/10.1016/j.mee.2010.12.070
15.
15. D. J. Ewing, L. M. Porter, Q. Wahab, X. Ma, T. S. Sudharshan, S. Tumakha, M. Gao, and L. J. Brillson, J. Appl. Phys. 101, 114514 (2007).
http://dx.doi.org/10.1063/1.2745436
16.
16. F. Giannazzo, F. Roccaforte, F. Iucolano, V. Raineri, F. Ruffino, and M. G. Grimaldi, J. Vac. Sci. Technol. B 27, 789 (2009).
http://dx.doi.org/10.1116/1.3043453
17.
17. F. Roccaforte, F. Giannazzo, and V. Raineri, J. Phys. D: Appl. Phys. 43, 223001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/22/223001
18.
18. S. Shivaraman, L. H. Herman, F. Rana, J. Park, and M. G. Spencer, Appl. Phys. Lett. 100, 183112 (2012).
http://dx.doi.org/10.1063/1.4711769
19.
19. S. Bellone, L. Di Benedetto, and A. Rubino, J. Appl. Phys. 113, 224503 (2013).
http://dx.doi.org/10.1063/1.4809543
20.
20. L. Huang, F. Qin, S. Li, and D. Wang, Appl. Phys. Lett. 103, 033520 (2013).
http://dx.doi.org/10.1063/1.4816158
21.
21. A. F. Hamida, Z. Ouennoughi, A. Sellai, R. Weiss, and H. Ryssel, Semicond. Sci. Technol. 23, 045005 (2008).
http://dx.doi.org/10.1088/0268-1242/23/4/045005
22.
22. M. Furno, F. Bonani, and G. Ghione, Solid-State Electron. 51, 466 (2007).
http://dx.doi.org/10.1016/j.sse.2007.01.028
23.
23. L. Zheng, R. P. Joshi, and C. Fazi, J. Appl. Phys. 85, 3701 (1999).
http://dx.doi.org/10.1063/1.369735
24.
24. R. T. Tung, Phys. Rev. B 45, 13509 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13509
25.
25. R. T. Tung, Mater. Sci. Eng. 35, 1 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00037-7
26.
26. P. M. Gammon, A. Pérez-Tomás, V. A. Shah, G. J. Roberts, M. R. Jennings, J. A. Covington, and P. A. Mawby, J. Appl. Phys. 106, 093708 (2009).
http://dx.doi.org/10.1063/1.3255976
27.
27. S. M. Sze and K. K. Ng, “ Si Dopant and freeze-out calculations,” in Physics of Semiconductor Devices (Wiley, New York, 2007), pp. 2326.
28.
28. D. Korucu, A. Turut, and H. Efeoglu, Physica B 414, 35 (2013).
http://dx.doi.org/10.1016/j.physb.2013.01.010
29.
29. K. Sarpatwari, S. E. Mohney, and O. O. Awadelkarim, J. Appl. Phys. 109, 014510 (2011).
http://dx.doi.org/10.1063/1.3530868
30.
30. P. M. Gammon, E. Donchev, A. Pérez-Tomás, V. A. Shah, J. S. Pang, P. K. Petrov, M. R. Jennings, C. A. Fisher, P. A. Mawby, D. R. Leadley, and N. McN. Alford, J. Appl. Phys. 112, 114513 (2012).
http://dx.doi.org/10.1063/1.4768718
31.
31. H. J. Im, Y. Ding, J. P. Pelz, and W. J. Choyke, Phys. Rev. B 64, 075310 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075310
32.
32. I. Ohdomari and K. N. Tu, J. Appl. Phys. 51, 3735 (1980).
http://dx.doi.org/10.1063/1.328160
33.
33. J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, J. Vac. Sci. Technol. 21, 570 (1982).
http://dx.doi.org/10.1116/1.571765
34.
34. Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, Solid-State Electron. 29, 633 (1986).
http://dx.doi.org/10.1016/0038-1101(86)90145-0
35.
35. J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991).
http://dx.doi.org/10.1063/1.347243
36.
36. L. Cheng, I. Sankin, J. N. Merrett, V. Bondarenko, R. Kelley, S. Purohit, Y. Koshka, J. B. Casady, and M. S. Mazzola, in Proceedings of the ISPSD, 2005.
37.
37. M. Shanbhag and T. Chow, in Proceedings of the ISPSD, 2002.
38.
38. Y. Yang, A. J. Forsyth, S. Dimler, D. Wu, C. H. Tan, C. Jia, and W. Bailey, IET Power Electron. 5, 739 (2012).
http://dx.doi.org/10.1049/iet-pel.2011.0287
39.
39. A. J. Forsyth, S. Y. Yang, P. A. Mawby, and P. Igic, IEE Proc.: Circuits Devices Syst. 153, 407 (2006).
http://dx.doi.org/10.1049/ip-cds:20050359
40.
40. A. Pérez-Tomás, M. R. Jennings, M. Davis, J. A. Covington, P. A. Mawby, V. Shah, and T. Grasby, J. Appl. Phys. 102, 014505 (2007).
http://dx.doi.org/10.1063/1.2752148
41.
41. F. Roccaforte, F. La Via, V. Raineri, P. Musumeci, L. Calcagno, and G. G. Condorelli, Appl. Phys. A: Mater. Sci. Process. 77, 827 (2003).
http://dx.doi.org/10.1007/s00339-002-1981-8
42.
42. J.-H. Shin, J. Park, S. Jang, T. Jang, and K. S. Kim, Appl. Phys. Lett. 102, 243505 (2013).
http://dx.doi.org/10.1063/1.4811756
43.
43. A. Saxena, Surf. Sci. 13, 151 (1969).
http://dx.doi.org/10.1016/0039-6028(69)90245-3
44.
44. W. Gotz, A. Schoner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, and S. Leibenzeder, J. Appl. Phys. 73, 3332 (1993).
http://dx.doi.org/10.1063/1.352983
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/22/10.1063/1.4842096
Loading
/content/aip/journal/jap/114/22/10.1063/1.4842096
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/22/10.1063/1.4842096
2013-12-09
2016-09-26

Abstract

For the first time, the I-V-T dataset of a Schottky diode has been accurately modelled, parameterised, and fully fit, incorporating the effects of interface inhomogeneity, patch pinch-off and resistance, and ideality factors that are both heavily temperature and voltage dependent. A Ni/SiC Schottky diode is characterised at 2 K intervals from 20 to 320 K, which, at room temperature, displays low ideality factors ( < 1.01) that suggest that these diodes may be homogeneous. However, at cryogenic temperatures, excessively high ( > 8), voltage dependent ideality factors and evidence of the so-called “thermionic field emission effect” within a T0-plot, suggest significant inhomogeneity. Two models are used, each derived from Tung's original interactive parallel conduction treatment of barrier height inhomogeneity that can reproduce these commonly seen effects in single temperature I-V traces. The first model incorporates patch pinch-off effects and produces accurate and reliable fits above around 150 K, and at current densities lower than 10−5 A cm−2. Outside this region, we show that resistive effects within a given patch are responsible for the excessive ideality factors, and a second simplified model incorporating these resistive effects as well as pinch-off accurately reproduces the entire temperature range. Analysis of these fitting parameters reduces confidence in those fits above 230 K, and questions are raised about the physical interpretation of the fitting parameters. Despite this, both methods used are shown to be useful tools for accurately reproducing I-V-T data over a large temperature range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/22/1.4842096.html;jsessionid=6dlRl_ANIv0S0e2Rh_w90fmx.x-aip-live-06?itemId=/content/aip/journal/jap/114/22/10.1063/1.4842096&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/22/10.1063/1.4842096&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/22/10.1063/1.4842096'
Right1,Right2,Right3,