Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, Proc. IEEE 96, 287 (2008).
2. H. Kambayashi, Y. Satoh, S. Ootomo, T. Kokawa, T. Nomura, S. Kato, and T. P. Chow, Solid-State Electron. 54, 660 (2010).
3. M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, IEEE Electron Device Lett. 31, 189 (2010).
4. J. Kashiwagi, T. Fujiwara, M. Akutsu, N. Ito, K. Chikamatsu, and K. Nakahara, IEEE Electron Device Lett. 34, 1109 (2013).
5. Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, IEEE Electron Device Lett. 34, 1373 (2013).
6. T. Hashizume, S. Ootomo, T. Inagaki, and H. Hasegawa, J. Vac. Sci. Technol. B 21, 1828 (2003).
7. T. Hashizume, S. Ootomo, and H. Hasegawa, Appl. Phys. Lett. 83, 2952 (2003).
8. D. Gregušová, R. Stoklas, K. Čičo, T. Lalinský, and P. Kordoš, Semicond. Sci. Technol. 22, 947 (2007).
9. E. Miyazaki, Y. Goda, S. Kishimoto, and T. Mizutani, Solid-State Electron. 62, 152 (2011).
10. J. Robertson and B. Falabretti, Mater. Sci. Eng. B 135, 267 (2006).
11. Y. Hori, C. Mizue, and T. Hashizume, Jpn. J. Appl. Phys., Part 1 49, 080201 (2010).
12. X. Liu, R. Yeluri, J. Lu, and U. K. Mishra, J. Electron. Mater. 42, 33 (2013).
13. C. M. Jackson, A. R. Arehart, E. Cinkilic, B. McSkimming, J. S. Speck, and S. A. Ringel, J. Appl. Phys. 113, 204505 (2013).
14. C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, Jpn. J. Appl. Phys., Part 1 50, 021001 (2011).
15. S. Huang, S. Yang, J. Roberts, and K. J. Chen, Jpn. J. Appl. Phys., Part 1 50, 110202 (2011).
16. Z. Yatabe, Y. Hori, S. Kim, and T. Hashizume, Appl. Phys. Express 6, 016502 (2013).
17. M. Ťapajna, M. Jurkovič, L. Válik, Š. Haščík, D. Gregušová, F. Brunner, E.-M. Cho, and J. Kuzmík, Appl. Phys. Lett. 102, 243509 (2013).
18. Y. Hori, C. Mizue, and T. Hashizume, Phys. Status Solidi C 9(6), 1356 (2012).
19. M. Miczek, C. Mizue, T. Hashizume, and B. Adamowicz, J. Appl. Phys. 103, 104510 (2008).
20. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, Inc., New Jersey, 2003), p. 325.
21. M. Fagerlind, F. Allerstam, E. Ö. Sveinbjörnsson, N. Rorsman, A. Kakanakova-Georgieva, A. Lundskog, U. Forsberg, and E. Janzén, J. Appl. Phys. 108, 014508 (2010).
22. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices Third Edition (John Wiley & Sons, Inc., New Jersey, 2007), p. 215.
23. K. Ooyama, K. Sugawara, S. Okuzaki, H. Taketomi, H. Miyake, K. Hiramatsu, and T. Hashizume, Jpn. J. Appl. Phys., Part 1 49, 101001 (2010).
24. A. Uedono, S. Ishibashi, S. Keller, C. Moe, P. Cantu, T. M. Katona, D. S. Kamber, Y. Wu, E. Letts, S. A. Newman, S. Nakamura, J. S. Speck, U. K. Mishra, S. P. DenBaars, T. Onuma, and S. F. Chichibu, J. Appl. Phys. 105, 054501 (2009).
25. F. Conzález-Posada, J. A. Bardwell, S. Moisa, S. Haffouz, H. Tang, A. F. Braña, and E. Muñoz, Appl. Surf. Sci. 253, 6185 (2007).
26. M. Higashiwaki, S. Chowdhury, B. L. Swenson, and U. K. Mishra, Appl. Phys. Lett. 97, 222104 (2010).
27. B. Brennan, X. Qin, H. Dong, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 101, 211604 (2012).
28. P. Sivasubramani, T. J. Park, B. E. Coss, A. Lucero, J. Huang, B. Brennan, Y. Cao, D. Jena, H. Xing, R. M. Wallace, and J. Kim, Phys. Status Solidi RRL 6, 22 (2012).
29. N. Shiozaki and T. Hashizume, J. Appl. Phys. 105, 064912 (2009).
30. C. Bae, G. B. Rayner, and G. Lucovsky, Appl. Surf. Sci. 216, 119 (2003).
31. M. Tajima, J. Kotani, and T. Hashizume, Jpn. J. Appl. Phys., Part 1 48, 020203 (2009).
32. G. V. Soares, K. P. Bastos, R. P. Pezzi, L. Miotti, C. Driemeier, I. J. R. Baumvol, C. Hinkle, and G. Lucovsky, Appl. Phys. Lett. 84, 4992 (2004).

Data & Media loading...


Article metrics loading...



We have investigated the relationship between improved electrical properties of AlO/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) and electronic state densities at the AlO/AlGaN interface evaluated from the same structures as the MOS-HEMTs. To evaluate AlO/AlGaN interface state densities of the MOS-HEMTs, two types of capacitance-voltage () measurement techniques were employed: the photo-assisted measurement for the near-midgap states and the frequency dependent characteristics for the states near the conduction-band edge. To reduce the interface states, an NO-radical treatment was applied to the AlGaN surface just prior to the deposition of the AlO insulator. As compared to the sample without the treatment, the NO-radical treated AlO/AlGaN/GaN structure showed smaller frequency dispersion of the curves in the positive gate bias range. The state densities at the AlO/AlGaN interface were estimated to be 1 × 1012 cm−2 eV−1 or less around the midgap and 8 × 1012 cm−2 eV−1 near the conduction-band edge. In addition, we observed higher maximum drain current at the positive gate bias and suppressed threshold voltage instability under the negative gate bias stress even at 150 °C. Results presented in this paper indicated that the NO-radical treatment is effective both in reducing the interface states and improving the electrical properties of the AlO/AlGaN/GaN MOS-HEMTs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd