1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Compact photonic-crystal superabsorbers from strongly absorbing media
Rent:
Rent this article for
USD
10.1063/1.4811521
/content/aip/journal/jap/114/3/10.1063/1.4811521
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4811521

Figures

Image of FIG. 1.
FIG. 1.

(a) Schematics of the SiC-air 1D-PC with the geometric parameters indicated. (b) Spectral response of the real (solid) and imaginary (dashed) parts of the SiC permittivity model of Eq. (3) . (c) Absorption (dashed line) and reflection (solid line) for a thick bulk SiC block.

Image of FIG. 2.
FIG. 2.

Spectral response of the energy velocity at the interface of a semi-infinite SiC-air PCs structure is shown as solid lines. The dashed lines depict the corresponding values for the same PCs but with 50% of their entry face being cut-off. The results in (a), (b), and (c) represent the PC cases with a lattice constant of a equal to 5 , 8 , and 10 , respectively. In all cases, the interface-energy velocity value of the reflectionless condition, of Eq. (1) , is depicted with dotted lines. Note, all energy velocity values are expressed in terms of the speed of light . The vertical solid lines represent the spectral position of the absorption peaks that we will observe in Fig. 5 .

Image of FIG. 3.
FIG. 3.

The energy-velocity gradient is shown for two PC systems with a lattice constant equal to 5 and 10 in panels (a) and (b), respectively. The horizontal dashed line represents the reflectionless condition value dictated by Eq. (2) . Note the coordinate within the PC entry layer, –, is expressed in terms of the lattice constant a, while the energy velocity gradient is expressed in terms of /a, with being the speed of light.

Image of FIG. 4.
FIG. 4.

Reflection (in color-map) versus termination ratio, and free space wavelength, calculated from TMM. Panels (a) and (b) represent the result corresponding to the semi-infinite PCs with lattice constant a, of 5 and 10 , respectively. Same is shown in (c) and (d) but for 200 m-thick PCs.

Image of FIG. 5.
FIG. 5.

Absorptance versus free space wavelength, , for three 200 thick SiC-air PCs of 0.05 filling ratio and 50% front layer truncation. The solid, dashed, and dotted-dashed curves correspond to PCs with a lattice constant a equal to 10 , 8 , and 5 , respectively. The front SiC layer is terminated to half its original size.

Image of FIG. 6.
FIG. 6.

Complex band structure (free space wavelength versus Bloch wavevector q) for the PC cases of lattice constant a, 5  [in (a) and (b)] and 10  [in (c) and (d)]. The respective reflectionless-condition wavelengths are indicated with horizontal dashed lines. Note, both the real and imaginary parts of the Bloch wave vector q are expressed in terms of .

Image of FIG. 7.
FIG. 7.

Dissipated to incident power ratio versus free space wavelength, , for the 200 m thick SiC-air PCs with 50% truncated front layer, within the first PC unit cells. The result in (a) [(b)] corresponds to the PC case with 5 [10 ] lattice constant. The respective absorptance is shown for reference with the dark solid line. Note, the total number of PC unit cells, N, is 40 for the case in (a) and 20 for the case in (b).

Image of FIG. 8.
FIG. 8.

Absorptance enhancement of the two terminated SiC-air PCs with lattice constant a, 5 (dotted-dashed line with diamonds), and 10 (solid line with filled circles) with respect to the absorption of a SiC block about a wavelength-thick is plotted against the total thickness of SiC encountered by the EM wave as it travels through the PC.

Image of FIG. 9.
FIG. 9.

(a) Schematics of the compact PC-based design with all structural information indicated. (b) Reflectance (color-map) versus free space wavelength and front-layer truncation ratio . (c) Absorptance (solid lines) and reflectance (dotted lines), for the design in (a) with (c) [(d)] showing the case of [ ]. For comparison absorptance through a single layer is also shown for bulk SiC (dotted-dashed) and an ultra-thin SiC film as thick as the front layer of the structure of Fig. 9(d) . The vertical line designates the SiC Reststrahlen band-edge.

Image of FIG. 10.
FIG. 10.

Electric field amplitude, , profiles (left vertical axis) versus the coordinate within the compact superabsorber design. The depicted profiles are normalized with the incident electric field amplitude . The dotted lines represent the -decay, from the front to the back layer, as predicted by the complex band structure of Fig. 6 . The solid circles represent the ratio of incident power that is absorbed in each layer (see right vertical axis for values). Panels (a) and (b) represent the respective cases with front-to-back-layer truncation ratio of 0.05 and 0.5.

Image of FIG. 11.
FIG. 11.

(a) Schematics of the realizable compact PC with all structural information indicated. (b) Same as the design in (a) but resting on a substrate made from the spacer material.

Image of FIG. 12.
FIG. 12.

Energy velocity versus free space wavelength at the interface of a semi-infinite SiC- PC of lattice constant a = 3.5 m and SiC filling ratio equal to 0.065 (dashed lines). The required optimum of Eq. (1) is shown with a solid line. The inset highlights the wavelength region where the interface energy velocity intersects with the required optimum value.

Image of FIG. 13.
FIG. 13.

Reflectance (color-map), versus free space wavelength , and front-layer truncation ratio, for the SiC- system. In (a), the result of the semi-infinite PC is shown. In (b), the corresponding compact system of Fig. 11(a) is shown.

Image of FIG. 14.
FIG. 14.

Absorptance [(a)] and reflectance [(b)] versus free space wavelength for the compact SiC- -SiC system corresponding to a PC with a lattice constant a = 3.5 m and a SiC filling ratio of f = 0.065. Two cases of front-layer truncation are shown: the case of 0.05 truncation ratio with solid lines and the case of 0.5 truncation ratio with dashed lines. The corresponding circles and diamonds represent the respective result when the compact three-layer system rests on a 40 m thick substrate made of .

Tables

Generic image for table
Table I.

Outline of performance of the compact superabsorber of Fig. 11(a) for two front-layer truncation ratios [A stands for absorptance and DPR stands for dissipated power ratio].

Loading

Article metrics loading...

/content/aip/journal/jap/114/3/10.1063/1.4811521
2013-07-15
2014-04-24
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Compact photonic-crystal superabsorbers from strongly absorbing media
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4811521
10.1063/1.4811521
SEARCH_EXPAND_ITEM