Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D.-S. Kang, S. K. Han, J.-H. Kim, S. M. Yang, J. G. Kim, S.-K. Hong, D. Kim, H. Kim, and J.-H. Song, J. Vac. Sci. Technol. B 27, 1667 (2009).
2. D. Pradhan, Z. Su, S. Sindhwani, J. F. Honek, and K. T. Leung, J. Phys. Chem. C 115, 18149 (2011).
3. Y. Lei, Z. Jiao, M. H. Wu, and G. Wilde, Adv. Eng. Mater. 9, 343 (2007).
4. Y. Lei, C. H. Liang, Y. C. Wu, L. D. Zhang, and Y. Q. Mao, J. Vac. Sci. Technol. B 19, 1109 (2001).
5. P. Kumar, H. K. Malik, A. Ghosh, R. Thangavel, and K. Asokan, Appl. Phys. Lett. 102, 221903 (2013).
6. C. Zhu, D. J. Smith, and R. J. Nemanich, J. Vac. Sci. Technol. B 30, 051807 (2012).
7. G. M. Ali and P. Chakrabarti, J. Vac. Sci. Technol. B 30, 031206 (2012).
8. D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Curr. Drug Targets 7, 643 (2006).
9. G. Murtaza and I. Ahmad, J. Appl. Phys. 111, 123116 (2012).
10. M. Kurtz, J. Strunk, O. Hinrichsen, M. Muhler, K. Fink, B. Meyer, and C. Wöll, Angew. Chem., Int. Ed. 44, 2790 (2005).
11. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).
12. W. Wang, H. D. Xiong, M. D. Edelstein, D. Gundlach, J. S. Suehle, C. A. Richter, W.-K. Hong, and T. Lee, J. Appl. Phys. 101, 044313 (2007).
13. K. M. Wong, W. K. Chim, K. W. Ang, and Y. C. Yeo, Appl. Phys. Lett. 90, 153507 (2007).
14. K. M. Wong and W. K. Chim, Appl. Phys. Lett. 88, 083510 (2006).
15. K. M. Wong, Y. Fang, A. Devaux, L. Wen, J. Huang, L. D. Cola, and Y. Lei, Nanoscale 3, 4830 (2011).
16. T. N. Duc, K. Singh, M. Meyyappan, and M. M. Oye, Nanotechnology 23, 194015 (2012).
17. J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, and T. Sekiguchi, Appl. Phys. Lett. 83, 4414 (2003).
18. N. Moloto, S. Mpelane, L. M. Sikhwivhilu, and S. S. Ray, Int. J. Photoenergy 2012, 189069.
19. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
20. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001).
21. K. M. Wong, S. M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).
22. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
23. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008).
24. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
25. P. Carrier and S.-H. Wei, Phys. Rev. B 70, 035212 (2004).
26. K. M. Wong, S. M. Alay-e-Abbas, A. Shaukat, and Y. Lei, Solid State Sci. 18, 24 (2013).
27. O. Lupan, L. Chow, G. Chai, and H. Heinrich, Chem. Phys. Lett. 465, 249 (2008).
28. D. Zhang, X. Wu, N. Han, and Y. Chen, J. Nanopart. Res. 15, 1580 (2013).
29. C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, J.-J. Wu, W.-F. Su, C.-S. Lin, and Y.-F. Chen, Appl. Phys. Lett. 92, 223102 (2008).
30. Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, J. Appl. Phys. 97, 013528 (2005).
31. N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
32. S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
33. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
34. Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
35. M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).
36. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
37. A. F. Kohan, G. Ceder, D. Morgan, and Chris G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
38. P. Erhart and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).
39. R. Vidya, P. Ravindran, H. Fjellvåg, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, Phys. Rev. B 83, 045206 (2011).
40. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).
41. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. Caruso, M. J. Hampden-Smith, and T. T. Kodas, J. Lumin. 75, 11 (1997).
42. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
43. Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan, and T. Sekiguchi, J. Appl. Phys. 94, 4807 (2003).
44. J. Zhong, A. H. Kitai, P. Mascher, and W. Puff, J. Electrochem. Soc. 140, 3644 (1993).
45. R. H. Webb, Rep. Prog. Phys. 59, 427 (1996).
46. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. G. Rao, W. K. Chan, H. F. Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004).
47. Z.-M. Liao, H.-Z. Zhang, Y.-B. Zhou, J. Xu, J.-M. Zhang, and D.-P. Yu, Phys. Lett. A 372, 4505 (2008).
48. D. Wang and N. Reynolds, ISRN Cond. Mat. Phys. 2012, 950354 (2012).
49. K. Kodama and T. Uchino, J. Appl. Phys. 111, 093525 (2012).
50. C. Wöll, Prog. Surf. Sci. 82, 55 (2007).
51. S. J. Clark, J. Robertson, S. Lany, and A. Zunger, Phys. Rev. B 81, 115311 (2010).

Data & Media loading...


Article metrics loading...



A qualitative approach using room-temperature confocal microscopy is employed to investigate the spatial distribution of shallow and deep oxygen vacancy (V) concentrations on the polar (0001) and non-polar ( ) surfaces of zinc oxide (ZnO) nanowires (NWs). Using the spectral intensity variation of the confocal photoluminescence of the green emission at different spatial locations on the surface, the V concentrations of an individual ZnO NW can be obtained. The green emission at different spatial locations on the ZnO NW polar (0001) and non-polar ( ) surfaces is found to have maximum intensity near the NW edges, decreasing to a minimum near the NW center. First-principles calculations using simple supercell-slab (SS) models are employed to approximate/model the defects on the ZnO NW ( ) and (0001) surfaces. These calculations give increased insight into the physical mechanism behind the green emission spectral intensity and the characteristics of an individual ZnO NW. The highly accurate density functional theory (DFT)-based full-potential linearized augmented plane-wave plus local orbitals (FP-LAPW + lo) method is used to compute the defect formation energy (DFE) of the SSs. Previously, using these SS models, it was demonstrated through the FP-LAPW + lo method that in the presence of oxygen vacancies at the (0001) surface, the phase transformation of the SSs in the graphite-like structure to the wurtzite lattice structure will occur even if the thickness of the graphite-like SSs are equal to or less than 4 atomic graphite-like layers [Wong , J. Appl. Phys. , 014304 (2013)]. The spatial profile of the neutral V DFEs from the DFT calculations along the ZnO [0001] and [ ] directions is found to reasonably explain the spatial profile of the measured confocal luminescence intensity on these surfaces, leading to the conclusion that the green emission spectra of the NWs likely originate from neutral oxygen vacancies. Another significant result is that the variation in the calculated DFE along the ZnO [0001] and [ ] directions shows different behaviors owing to the non-polar and polar nature of these SSs. These results are important for tuning and understanding the variations in the optical response of ZnO NW-based devices in different geometric configurations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd