1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/3/10.1063/1.4813517
1.
1. D.-S. Kang, S. K. Han, J.-H. Kim, S. M. Yang, J. G. Kim, S.-K. Hong, D. Kim, H. Kim, and J.-H. Song, J. Vac. Sci. Technol. B 27, 1667 (2009).
http://dx.doi.org/10.1116/1.3137020
2.
2. D. Pradhan, Z. Su, S. Sindhwani, J. F. Honek, and K. T. Leung, J. Phys. Chem. C 115, 18149 (2011).
http://dx.doi.org/10.1021/jp205747z
3.
3. Y. Lei, Z. Jiao, M. H. Wu, and G. Wilde, Adv. Eng. Mater. 9, 343 (2007).
http://dx.doi.org/10.1002/adem.200700084
4.
4. Y. Lei, C. H. Liang, Y. C. Wu, L. D. Zhang, and Y. Q. Mao, J. Vac. Sci. Technol. B 19, 1109 (2001).
http://dx.doi.org/10.1116/1.1378011
5.
5. P. Kumar, H. K. Malik, A. Ghosh, R. Thangavel, and K. Asokan, Appl. Phys. Lett. 102, 221903 (2013).
http://dx.doi.org/10.1063/1.4809575
6.
6. C. Zhu, D. J. Smith, and R. J. Nemanich, J. Vac. Sci. Technol. B 30, 051807 (2012).
http://dx.doi.org/10.1116/1.4752089
7.
7. G. M. Ali and P. Chakrabarti, J. Vac. Sci. Technol. B 30, 031206 (2012).
http://dx.doi.org/10.1116/1.3701945
8.
8. D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Curr. Drug Targets 7, 643 (2006).
http://dx.doi.org/10.2174/138945006777435245
9.
9. G. Murtaza and I. Ahmad, J. Appl. Phys. 111, 123116 (2012).
http://dx.doi.org/10.1063/1.4729264
10.
10. M. Kurtz, J. Strunk, O. Hinrichsen, M. Muhler, K. Fink, B. Meyer, and C. Wöll, Angew. Chem., Int. Ed. 44, 2790 (2005).
http://dx.doi.org/10.1002/anie.200462374
11.
11. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, and J. G. Lu, Appl. Phys. Lett. 85, 5923 (2004).
http://dx.doi.org/10.1063/1.1836870
12.
12. W. Wang, H. D. Xiong, M. D. Edelstein, D. Gundlach, J. S. Suehle, C. A. Richter, W.-K. Hong, and T. Lee, J. Appl. Phys. 101, 044313 (2007).
http://dx.doi.org/10.1063/1.2496007
13.
13. K. M. Wong, W. K. Chim, K. W. Ang, and Y. C. Yeo, Appl. Phys. Lett. 90, 153507 (2007).
http://dx.doi.org/10.1063/1.2721868
14.
14. K. M. Wong and W. K. Chim, Appl. Phys. Lett. 88, 083510 (2006).
http://dx.doi.org/10.1063/1.2177352
15.
15. K. M. Wong, Y. Fang, A. Devaux, L. Wen, J. Huang, L. D. Cola, and Y. Lei, Nanoscale 3, 4830 (2011).
http://dx.doi.org/10.1039/c1nr10806a
16.
16. T. N. Duc, K. Singh, M. Meyyappan, and M. M. Oye, Nanotechnology 23, 194015 (2012).
http://dx.doi.org/10.1088/0957-4484/23/19/194015
17.
17. J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, and T. Sekiguchi, Appl. Phys. Lett. 83, 4414 (2003).
http://dx.doi.org/10.1063/1.1629788
18.
18. N. Moloto, S. Mpelane, L. M. Sikhwivhilu, and S. S. Ray, Int. J. Photoenergy 2012, 189069.
http://dx.doi.org/10.1155/2012/189069
19.
19. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
http://dx.doi.org/10.1063/1.362349
20.
20. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001).
21.
21. K. M. Wong, S. M. Alay-e-Abbas, A. Shaukat, Y. Fang, and Y. Lei, J. Appl. Phys. 113, 014304 (2013).
http://dx.doi.org/10.1063/1.4772647
22.
22. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
23.
23. F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev. B 77, 245202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245202
24.
24. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
25.
25. P. Carrier and S.-H. Wei, Phys. Rev. B 70, 035212 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.035212
26.
26. K. M. Wong, S. M. Alay-e-Abbas, A. Shaukat, and Y. Lei, Solid State Sci. 18, 24 (2013).
http://dx.doi.org/10.1016/j.solidstatesciences.2012.12.008
27.
27. O. Lupan, L. Chow, G. Chai, and H. Heinrich, Chem. Phys. Lett. 465, 249 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.09.042
28.
28. D. Zhang, X. Wu, N. Han, and Y. Chen, J. Nanopart. Res. 15, 1580 (2013).
http://dx.doi.org/10.1007/s11051-013-1580-y
29.
29. C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, J.-J. Wu, W.-F. Su, C.-S. Lin, and Y.-F. Chen, Appl. Phys. Lett. 92, 223102 (2008).
http://dx.doi.org/10.1063/1.2938701
30.
30. Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, J. Appl. Phys. 97, 013528 (2005).
http://dx.doi.org/10.1063/1.1821636
31.
31. N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).
http://dx.doi.org/10.1063/1.1494125
32.
32. S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
http://dx.doi.org/10.1063/1.368295
33.
33. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
http://dx.doi.org/10.1063/1.1787905
34.
34. Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
http://dx.doi.org/10.1063/1.2064308
35.
35. M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).
http://dx.doi.org/10.1016/0022-2313(92)90047-D
36.
36. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
http://dx.doi.org/10.1063/1.1394173
37.
37. A. F. Kohan, G. Ceder, D. Morgan, and Chris G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15019
38.
38. P. Erhart and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).
http://dx.doi.org/10.1063/1.2206559
39.
39. R. Vidya, P. Ravindran, H. Fjellvåg, B. G. Svensson, E. Monakhov, M. Ganchenkova, and R. M. Nieminen, Phys. Rev. B 83, 045206 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.045206
40.
40. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).
http://dx.doi.org/10.1063/1.3216464
41.
41. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. Caruso, M. J. Hampden-Smith, and T. T. Kodas, J. Lumin. 75, 11 (1997).
http://dx.doi.org/10.1016/S0022-2313(96)00096-8
42.
42. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
http://dx.doi.org/10.1063/1.116699
43.
43. Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan, and T. Sekiguchi, J. Appl. Phys. 94, 4807 (2003).
http://dx.doi.org/10.1063/1.1609050
44.
44. J. Zhong, A. H. Kitai, P. Mascher, and W. Puff, J. Electrochem. Soc. 140, 3644 (1993).
http://dx.doi.org/10.1149/1.2221143
45.
45. R. H. Webb, Rep. Prog. Phys. 59, 427 (1996).
http://dx.doi.org/10.1088/0034-4885/59/3/003
46.
46. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. G. Rao, W. K. Chan, H. F. Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004).
http://dx.doi.org/10.1002/adfm.200305082
47.
47. Z.-M. Liao, H.-Z. Zhang, Y.-B. Zhou, J. Xu, J.-M. Zhang, and D.-P. Yu, Phys. Lett. A 372, 4505 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.04.013
48.
48. D. Wang and N. Reynolds, ISRN Cond. Mat. Phys. 2012, 950354 (2012).
http://dx.doi.org/10.5402/2012/950354
49.
49. K. Kodama and T. Uchino, J. Appl. Phys. 111, 093525 (2012).
http://dx.doi.org/10.1063/1.4712624
50.
50. C. Wöll, Prog. Surf. Sci. 82, 55 (2007).
http://dx.doi.org/10.1016/j.progsurf.2006.12.002
51.
51. S. J. Clark, J. Robertson, S. Lany, and A. Zunger, Phys. Rev. B 81, 115311 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115311
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4813517
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Side view of the 6 × 1 × 1 SS used for approximating the horizontal cross section of the ZnO NW, and the vacuum region used to decouple the interactions between the consecutive SSs. The green plane represents the center of the 6 × 1 × 1 SS. (b) Side view of the 1 × 1 × 5 SS used in the approximation of the vertical cross section of the ZnO NW. The O, Zn, surface O-vacancy, and deep O-vacancy atoms are represented by the large red, small grey, yellow-crossed, and blue-crossed spheres, respectively. The 6 × 1 × 1 and 1 × 1 × 5 SSs are obtained by stacking the ZnO primitive unit cells along the and directions, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Typical top view SEM image showing the cross section and (b) an XRD pattern of the ZnO NW arrays. (c) An HRTEM image of a single ZnO NW.

Image of FIG. 3.

Click to view

FIG. 3.

Raman spectrum of the ZnO NW arrays.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Spatially resolved CPL intensity microscope image of the ZnO NW arrays. The blue lines represent locations where the CPL spectra are taken at different spatial locations. (b) Plot of several CPL spectra of the green luminescence taken at different spatial locations along the blue guide line across the cross section surface of one laterally elongated ZnO NW.

Image of FIG. 5.

Click to view

FIG. 5.

(a) CPL intensity microscope image of a thin ZnO NW lying on its side. (b) The CPL spectra at three different spatial locations along the [0001] direction, which corresponds to a vertical cross-section of the NW that is lying on its side.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Schematic diagram of a single ZnO NW showing the top (0001) surface and side walls of the NW. (b) and (c) Enlarged confocal intensity images showing the six spatial locations where the CPL measurements are taken on an individual NW at the (0001) surface. Each rectangular dotted box in the figure represents a single N × 1 × 1 SS model.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Variation of the average maximum intensity of the green emission CPL spectra at the locations d, d, d, d, d, and d over the horizontal cross-sectional surface of four different laterally elongated ZnO NWs. (b) The O defect formation energies at different spatial locations along the 6 × 1 × 1 SS calculated using the Wien2k simulation program (under both O-rich and O-poor conditions). The spatial locations are calculated with respect to the center of the structure.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Variation of the average maximum intensity of the CPL spectra at the locations l, l, and l over the vertical cross-sectional ( ) surface of four different ZnO NWs lying on their sides. (b) The O defect formation energies at different spatial locations along the 1 × 1 × 5 SS calculated under both O-rich and O-poor conditions. The spatial locations on the NW lying on its side are calculated with respect to the slanted top edge where the (0001) and ( ) surface meet each other.

Loading

Article metrics loading...

/content/aip/journal/jap/114/3/10.1063/1.4813517
2013-07-17
2014-04-16

Abstract

A qualitative approach using room-temperature confocal microscopy is employed to investigate the spatial distribution of shallow and deep oxygen vacancy (V) concentrations on the polar (0001) and non-polar ( ) surfaces of zinc oxide (ZnO) nanowires (NWs). Using the spectral intensity variation of the confocal photoluminescence of the green emission at different spatial locations on the surface, the V concentrations of an individual ZnO NW can be obtained. The green emission at different spatial locations on the ZnO NW polar (0001) and non-polar ( ) surfaces is found to have maximum intensity near the NW edges, decreasing to a minimum near the NW center. First-principles calculations using simple supercell-slab (SS) models are employed to approximate/model the defects on the ZnO NW ( ) and (0001) surfaces. These calculations give increased insight into the physical mechanism behind the green emission spectral intensity and the characteristics of an individual ZnO NW. The highly accurate density functional theory (DFT)-based full-potential linearized augmented plane-wave plus local orbitals (FP-LAPW + lo) method is used to compute the defect formation energy (DFE) of the SSs. Previously, using these SS models, it was demonstrated through the FP-LAPW + lo method that in the presence of oxygen vacancies at the (0001) surface, the phase transformation of the SSs in the graphite-like structure to the wurtzite lattice structure will occur even if the thickness of the graphite-like SSs are equal to or less than 4 atomic graphite-like layers [Wong , J. Appl. Phys. , 014304 (2013)]. The spatial profile of the neutral V DFEs from the DFT calculations along the ZnO [0001] and [ ] directions is found to reasonably explain the spatial profile of the measured confocal luminescence intensity on these surfaces, leading to the conclusion that the green emission spectra of the NWs likely originate from neutral oxygen vacancies. Another significant result is that the variation in the calculated DFE along the ZnO [0001] and [ ] directions shows different behaviors owing to the non-polar and polar nature of these SSs. These results are important for tuning and understanding the variations in the optical response of ZnO NW-based devices in different geometric configurations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/3/1.4813517.html;jsessionid=11kej3179h7ai.x-aip-live-01?itemId=/content/aip/journal/jap/114/3/10.1063/1.4813517&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first principles calculations
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4813517
10.1063/1.4813517
SEARCH_EXPAND_ITEM