AIP Publishing manuscript submission and processing system (PXP) is currently unavailable to users in China. We are working to resolve the issue as quickly as possible. We apologize for the inconvenience.

尊敬的中国作者和评审人:AIP Publishing (AIP出版公司) 的论文发布系统(PXP)目前遇到一些技术问题。我们将为您尽快解决。因此带来的不便,我们向您表达我们诚挚的歉意!

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. Y. Zerov, V. G. Malyarov, and I. A. Khrebtov, J. Opt. Technol. 78, 308316 (2011).
2. S. E. Schwarz and B. T. Ulrich, J. Appl. Phys. 48, 18701873 (1977).
3. R. A. Wood, in Electron Devices Meeting, 1993. IEDM '93. Technical Digest., International (1993), pp. 175177.
4. F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418428 (2005).
5. I. Codreanu and G. D. Boreman, Appl. Opt. 41, 18351840 (2002).
6. F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, Infrared Phys. Technol. 45, 4751 (2004).
7. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, Infrared Phys. Technol. 41, 271281 (2000).
8. F. J. González, B. Ilic, J. Alda, and G. D. Boreman, IEEE J. Sel. Top. Quantum Electron. 11, 117120 (2005).
9. N. Chong and H. Ahmed, Appl. Phys. Lett. 71, 1607 (1997).
10. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, Nano Lett. 9, 25532558 (2009).
11. T. Taubner, F. Keilmann, and R. Hillenbrand, Opt. Express 13, 88938899 (2005).
12. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, Opt. Express 20, 1198611993 (2012).
13. A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, Phys. Rev. B 79, 125439 (2009).
14. F. Keilmann and R. Hillenbrand, Philos. Trans. R. Soc. London, Ser. A 362, 787806 (2004).
15. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, Nano Lett. 8, 33573363 (2008).
16. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, Opt. Lett. 33, 848850 (2008).
17. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Nano Lett. 11, 39223926 (2011).
18. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, Opt. Express 18, 2167821686 (2010).
19. L. A. Florence, E. C. Kinzel, R. L. Olmon, J. C. Ginn, M. B. Raschke, and G. D. Boreman, Infrared Phys. Technol. 55, 449553 (2012).
20. R. Hillenbrand, in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011), pp. 13.
21. M. Schnell, P. Alonso Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, Nat. Photonics 5, 283287 (2011).
22. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Opt. Express 16, 2029520305 (2008).
23. P. Sarriugarte, M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Golmar, F. Casanova, L. E. Hueso, and R. Hillenbrand, Opt. Commun. 285, 33783382 (2012).
24. P. Alonso-Gonzalez, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, Opt. Express 21, 12701280 (2013).
25. F. J. González, J. Alda, J. Simon, J. Ginn, and G. Boreman, Infrared Phys. Technol 52, 4851 (2009).
26. B. Deutsch, R. Hillenbrand, and L. Novotny, Opt. Express 16, 494501 (2008).
27. R. Hillenbrand and F. Keilmann, Phys. Rev. Lett. 85, 30293032 (2000).
28. B. Knoll and F. Keilmann, Opt. Commun. 182, 321328 (2000).
29. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 0137058 (2007).
30. H. Paolo Biagioni, J.-S. Huang, and H. Bert, Rep. Prog. Phys. 75, 024402 (2012).
31. F. J. Gonzalez and J. Alda, in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) (2010), pp. 13.
32. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, Nat. Commun. 2, 267 (2011).

Data & Media loading...


Article metrics loading...



The near-field characteristics of single, double, and arrays of connected dipole nano-antennas coupled to bolometers were studied by infrared scattering scanning near-field optical microscopy (-SNOM) and analyzed by numerical simulations. Results were consistent with classical antenna theory showing the expected π phase difference across the terminals of the dipoles. However, according to the observed differences between the measurements and simulations, the symmetry of the amplitude signal appeared to be sensitive with respect to the position of the bolometric element relative to the dipoles. The effect of the position of the bolometer on the associated near-field distribution suggests an influence on the coupling and efficiency of energy transfer into these detectors, which could be important for determining tolerances in the fabrication of such devices. These results show how near-field measurements in general can provide critical information to guide the design of nano-antennas, nano-antenna-phased arrays, and integrated photonic devices.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near-field mapping of dipole nano-antenna-coupled bolometers