1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Near-field mapping of dipole nano-antenna-coupled bolometers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/3/10.1063/1.4815882
1.
1. V. Y. Zerov, V. G. Malyarov, and I. A. Khrebtov, J. Opt. Technol. 78, 308316 (2011).
http://dx.doi.org/10.1364/JOT.78.000308
2.
2. S. E. Schwarz and B. T. Ulrich, J. Appl. Phys. 48, 18701873 (1977).
http://dx.doi.org/10.1063/1.323940
3.
3. R. A. Wood, in Electron Devices Meeting, 1993. IEDM '93. Technical Digest., International (1993), pp. 175177.
4.
4. F. J. González and G. D. Boreman, Infrared Phys. Technol. 46, 418428 (2005).
http://dx.doi.org/10.1016/j.infrared.2004.09.002
5.
5. I. Codreanu and G. D. Boreman, Appl. Opt. 41, 18351840 (2002).
http://dx.doi.org/10.1364/AO.41.001835
6.
6. F. J. González, C. S. Ashley, P. G. Clem, and G. D. Boreman, Infrared Phys. Technol. 45, 4751 (2004).
http://dx.doi.org/10.1016/S1350-4495(03)00177-4
7.
7. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, Infrared Phys. Technol. 41, 271281 (2000).
http://dx.doi.org/10.1016/S1350-4495(00)00047-5
8.
8. F. J. González, B. Ilic, J. Alda, and G. D. Boreman, IEEE J. Sel. Top. Quantum Electron. 11, 117120 (2005).
http://dx.doi.org/10.1109/JSTQE.2004.841474
9.
9. N. Chong and H. Ahmed, Appl. Phys. Lett. 71, 1607 (1997).
http://dx.doi.org/10.1063/1.119992
10.
10. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, Nano Lett. 9, 25532558 (2009).
http://dx.doi.org/10.1021/nl900638p
11.
11. T. Taubner, F. Keilmann, and R. Hillenbrand, Opt. Express 13, 88938899 (2005).
http://dx.doi.org/10.1364/OPEX.13.008893
12.
12. E. C. Kinzel, J. C. Ginn, R. L. Olmon, D. J. Shelton, B. A. Lail, I. Brener, M. B. Sinclair, M. B. Raschke, and G. D. Boreman, Opt. Express 20, 1198611993 (2012).
http://dx.doi.org/10.1364/OE.20.011986
13.
13. A. Garcia-Etxarri, I. Romero, F. J. Garcia de Abajo, R. Hillenbrand, and J. Aizpurua, Phys. Rev. B 79, 125439 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125439
14.
14. F. Keilmann and R. Hillenbrand, Philos. Trans. R. Soc. London, Ser. A 362, 787806 (2004).
http://dx.doi.org/10.1098/rsta.2003.1347
15.
15. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, Nano Lett. 8, 33573363 (2008).
http://dx.doi.org/10.1021/nl801808b
16.
16. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, Opt. Lett. 33, 848850 (2008).
http://dx.doi.org/10.1364/OL.33.000848
17.
17. P. Alonso-Gonzalez, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, Nano Lett. 11, 39223926 (2011).
http://dx.doi.org/10.1021/nl2021366
18.
18. P. M. Krenz, R. L. Olmon, B. A. Lail, M. B. Raschke, and G. D. Boreman, Opt. Express 18, 2167821686 (2010).
http://dx.doi.org/10.1364/OE.18.021678
19.
19. L. A. Florence, E. C. Kinzel, R. L. Olmon, J. C. Ginn, M. B. Raschke, and G. D. Boreman, Infrared Phys. Technol. 55, 449553 (2012).
http://dx.doi.org/10.1016/j.infrared.2012.07.008
20.
20. R. Hillenbrand, in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011), pp. 13.
21.
21. M. Schnell, P. Alonso Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, Nat. Photonics 5, 283287 (2011).
http://dx.doi.org/10.1038/nphoton.2011.33
22.
22. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, Opt. Express 16, 2029520305 (2008).
http://dx.doi.org/10.1364/OE.16.020295
23.
23. P. Sarriugarte, M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Golmar, F. Casanova, L. E. Hueso, and R. Hillenbrand, Opt. Commun. 285, 33783382 (2012).
http://dx.doi.org/10.1016/j.optcom.2012.03.004
24.
24. P. Alonso-Gonzalez, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, Opt. Express 21, 12701280 (2013).
http://dx.doi.org/10.1364/OE.21.001270
25.
25. F. J. González, J. Alda, J. Simon, J. Ginn, and G. Boreman, Infrared Phys. Technol 52, 4851 (2009).
http://dx.doi.org/10.1016/j.infrared.2008.12.002
26.
26. B. Deutsch, R. Hillenbrand, and L. Novotny, Opt. Express 16, 494501 (2008).
http://dx.doi.org/10.1364/OE.16.000494
27.
27. R. Hillenbrand and F. Keilmann, Phys. Rev. Lett. 85, 30293032 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3029
28.
28. B. Knoll and F. Keilmann, Opt. Commun. 182, 321328 (2000).
http://dx.doi.org/10.1016/S0030-4018(00)00826-9
29.
29. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 0137058 (2007).
http://dx.doi.org/10.1063/1.2432410
30.
30. H. Paolo Biagioni, J.-S. Huang, and H. Bert, Rep. Prog. Phys. 75, 024402 (2012).
http://dx.doi.org/10.1088/0034-4885/75/2/024402
31.
31. F. J. Gonzalez and J. Alda, in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) (2010), pp. 13.
32.
32. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, Nat. Commun. 2, 267 (2011).
http://dx.doi.org/10.1038/ncomms1268
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4815882
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM micrographs of the (a) single dipole nano-antenna-coupled microbolometers, (b) double dipole nano-antenna-coupled microbolometers, and (c) array of dipole nano-antenna-coupled microbolometers with annotations indicating the locations where -SNOM measurements were performed.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic showing the configuration used for the -SNOM measurements.

Image of FIG. 3.

Click to view

FIG. 3.

Images showing simulated and measured data from the single dipole nano-antenna-coupled microbolometer structure. Shown is simultaneously recorded (a) AFM height data showing the topography of the structure, (b) measured amplitude signal from -SNOM, and (c) measured phase signal from -SNOM. Also shown are (d) simulated amplitude and (e) simulated phase signal calculated from .

Image of FIG. 4.

Click to view

FIG. 4.

Images showing simulated and measured data from the double dipole nano-antenna-coupled microbolometer structure. Shown is simultaneously recorded (a) AFM height data showing the topography of the structure, (b)measured amplitude signal from -SNOM, and (c) measured phase signal from -SNOM. Also shown are (d)simulated amplitude and (e) simulated phase signal calculated from .

Image of FIG. 5.

Click to view

FIG. 5.

Images showing simulated and measured data from the corner of the dipole nano-antenna-coupled microbolometer array structure. Shown is simultaneously recorded (a) AFM height data showing the topography of the structure, (b) measured amplitude signal from -SNOM, and (c) measured phase signal from -SNOM. Also shown are (d) simulated amplitude and (e) simulated phase signal calculated from

Image of FIG. 6.

Click to view

FIG. 6.

Images showing simulated and measured data from the inside region of the dipole nano-antenna coupled microbolometer array structure. Shown is simultaneously recorded (a) AFM height data showing the topography of the structure, (b) measured amplitude signal from -SNOM, and (c) measured phase signal from -SNOM. Also shown are (d) simulated amplitude and (e) simulated phase signal calculated from .

Loading

Article metrics loading...

/content/aip/journal/jap/114/3/10.1063/1.4815882
2013-07-18
2014-04-24

Abstract

The near-field characteristics of single, double, and arrays of connected dipole nano-antennas coupled to bolometers were studied by infrared scattering scanning near-field optical microscopy (-SNOM) and analyzed by numerical simulations. Results were consistent with classical antenna theory showing the expected π phase difference across the terminals of the dipoles. However, according to the observed differences between the measurements and simulations, the symmetry of the amplitude signal appeared to be sensitive with respect to the position of the bolometric element relative to the dipoles. The effect of the position of the bolometer on the associated near-field distribution suggests an influence on the coupling and efficiency of energy transfer into these detectors, which could be important for determining tolerances in the fabrication of such devices. These results show how near-field measurements in general can provide critical information to guide the design of nano-antennas, nano-antenna-phased arrays, and integrated photonic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/3/1.4815882.html;jsessionid=eg9q3mc7anqih.x-aip-live-06?itemId=/content/aip/journal/jap/114/3/10.1063/1.4815882&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Near-field mapping of dipole nano-antenna-coupled bolometers
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4815882
10.1063/1.4815882
SEARCH_EXPAND_ITEM