1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Three-dimensional extreme ultraviolet emission from a droplet-based laser-produced plasma
Rent:
Rent this article for
USD
10.1063/1.4815955
/content/aip/journal/jap/114/3/10.1063/1.4815955
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4815955
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

(a) Picture of the robotic arm inside the vacuum chamber. The EUV energy monitor is mounted on the lower right. The arrows show the rotational movements in longitudinal and latitudinal directions. (b) Schematic of the experimental setup looking at the focusing lens. The laser irradiates the dispensed tin droplets, and the EUV energy monitor scans a predetermined range in one hemisphere. (c) Frame of reference for the measurement positions and for the Mercator projection. and are the longitude and the latitude, respectively. (d) Frame of reference for the two-dimensional representations. and are the angle versus the horizontal plane and the angle versus the laser axis, respectively.

Image of FIG. 2.
FIG. 2.

Mercator projection of the EUV mean energy at ±2%BW centered at 13.5 nm versus the detector position. The origin corresponds to the laser beam intersecting the sphere of the mapping. The black points represent the positions of the measurements. The map is obtained by cubic interpolation and shows EUV energy decreasing moving away from the laser beam.

Image of FIG. 3.
FIG. 3.

EUV mean energy in the ±2% BW centered at 13.5 nm versus the angle from the laser axis for different cuts. The cuts are lines defined by the intersection between the mapped spherical surface and a plane defined by the laser axis and the angle from the horizontal plane, which is reported in the plot legend ( is sketched in Figs. 1(b) and 1(d) ). The blue circles refer to the cut at  = 10°, the black squares to the cut at  = 0°, the green triangles to the cut at  = −20°, and the red crosses to the cut at  = −40°. The error bars show the standard deviation of the measurements. The difference between the cuts is smaller than the standard deviation, therefore the emission is assumed to be axisymmetric.

Image of FIG. 4.
FIG. 4.

Schematic of the model setup. The EDR is at the origin of the cylindrical coordinate system. The form of the iso-density lines is ellipsoidal, with a semi-major axis , and a semi-minor axis . The distance between the EDR and the center of the ellipsoidal density distribution is . The parameters of the model are , and .

Image of FIG. 5.
FIG. 5.

The density profiles for the isentropic () and for the isothermal () case are shown for a cut along the axis of symmetry together with the temperature for the isentropic assumption (). The EDR is located at  = 0.

Image of FIG. 6.
FIG. 6.

EUV emission versus the angle from the laser axis for the slab target case. The experimental data come from the work of Ando The measurements and the results from the models of the EUV transmission are plotted. The parameters used in the models are  = 1.2, and an offset of  = 1.55 .

Image of FIG. 7.
FIG. 7.

EUV emission as a function of the angle from the laser axis. The measurements and the results from the models of the EUV transmission are plotted. The parameters used in the models are  = 0.8, and an offset of  = 1.55 . The amount of EUV energy emitted behind the target with respect to the laser (or  > 90°) is 30% of the overall emitted energy.

Image of FIG. 8.
FIG. 8.

Gradient-length local Kn-number versus the axial position. The EDR is located at  = 0. The value stays below 0.05 up to 0.44. The contribution to the EUV absorption of the region outside the continuum is 0.1%. The continuum assumption is valid to obtain the estimation of the overall EUV absorption.

Image of FIG. 9.
FIG. 9.

Spatially integrated EUV transmission. The laser comes from the right and the EDR is at the origin of the coordinate system. The EUV transmission is integrated in the space along lines that propagate outwards, the lines have the EDR as their origin. The isentropic case (above) shows a slower decrease in the transmission than the isothermal case (below) because of the larger temperature between the droplet and the EDR.

Loading

Article metrics loading...

/content/aip/journal/jap/114/3/10.1063/1.4815955
2013-07-18
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Three-dimensional extreme ultraviolet emission from a droplet-based laser-produced plasma
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/3/10.1063/1.4815955
10.1063/1.4815955
SEARCH_EXPAND_ITEM