Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice (Springer, 2005).
2. J. M. Chabala, K. K. Soni, J. Li, K. L. Gavrilov, and R. Levi-Setti, Int. J. Mass Spectrom. Ion Process. 143, 191 (1995).
3. L. Scipioni, L. A. Stern, J. Notte, S. Sijbrandij, and B. Griffin, Adv. Mater. Process. 166, 27 (2008).
4. C. W. Hagen, E. Fokkema, and P. Kruit, J. Vac. Sci. Technol. B 26, 2091 (2008).
5. L. W. Swanson, G. A. Schwind, and A. E. Bell, J. Appl. Phys. 51, 3453 (1980).
6. B. W. Ward, J. A. Notte, and N. P. Economou, J. Vac. Sci. Technol. B 24, 2871 (2006).
7. B. G. Freinkman, A. V. Eletskii, and S. I. Zaitsev, Microelectron. Eng. 73–74, 139 (2004).
8. B. J. Claessens, S. B. van der Geer, G. Taban, E. J. D. Vredenbregt, and O. J. Luiten, Phys. Rev. Lett. 95, 164801 (2005).
9. J. L. Hanssen, J. J. McClelland, E. A. Dakin, and M. Jacka, Phys. Rev. 74, 063416 (2006).
10. B. J. Claessens, M. P. Reijnders, G. Taban, O. J. Luiten, and E. J. D. Vredenbregt, Phys. Plasmas 14, 093101 (2007).
11. J. L. Hanssen, S. B. Hill, J. Orloff, and J. J. McClelland, Nano Lett. 8, 2844 (2008).
12. A. V. Steele, B. Knuffman, J. J. McClelland, and J. Orloff, J. Vac. Sci. Technol. B 28, C6F1 (2010).
13. B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, New J. Phys. 13, 103035 (2011).
14. S. B. van der Geer, M. P. Reijnders, M. J. de Loos, E. J. D. Vredenbregt, P. H. A. Mutsaers, and O. J. Luiten, J. Appl. Phys. 102, 094312 (2007).
15. M. Senoner and W. E. S. Unger, J. Anal. At. Spectrom. 27, 1050 (2012).
16. J. Nellessen, J. Werner, and W. Ertmer, Opt. Commun. 78, 300 (1990).
17. C. C. Tsao, Y. Wang, J. Weiner, and V. S. Bagnato, J. Appl. Phys. 80, 8 (1996).
18. J. G. C. Tempelaars, R. J. W. Stas, P. G. M. Sebel, H. C. W. Beijerinck, and E. J. D. Vredenbregt, Eur. Phys. J. D 18, 113 (2002).
19. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. 58, 3891 (1998).
20. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
21. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).
22.All uncertainties in this paper are intended to be interpreted as one-standard-deviation, combined standard uncertainty (n.d.).
23. Springer Handbook of Atomic, Molecular, and Optical Physics, 2nd ed., edited by G. W. F. Drake (Springer, 2005).
24. P. W. Hawkes and E. Kasper, Principles of Electron Optics (Academic Press, 1996), Vol. 2.
25. O. Maragò, D. Ciampini, F. Fuso, E. Arimondo, C. Gabbanini, and S. T. Manson, Phys. Rev. 57, R4110 (1998).
26. B. M. Patterson, T. Takekoshi, and R. J. Knize, Phys. Rev. 59, 2508 (1999).
27. A. V. Steele, B. Knuffman, and J. J. McClelland, J. Appl. Phys. 109, 104308 (2011).
28. J. E. Barth and P. Kruit, Optik 101, 101 (1996).
29. M. Drewsen, P. Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Grison, and C. Salomon, Appl. Phys. B: Lasers Opt. 59, 283 (1994).

Data & Media loading...


Article metrics loading...



We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10 A m sr eV and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10 A m sr eV. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd