1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Length-dependent lattice thermal conductivity of graphene and its macroscopic limit
Rent:
Rent this article for
USD
10.1063/1.4817175
/content/aip/journal/jap/114/5/10.1063/1.4817175
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/5/10.1063/1.4817175
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

Supercell structures in the NEMD simulations for calculating the lattice thermal conductivities of graphene. (a) A magnified view near both the ends of the supercells along the length direction for the supercell width  = 4. (b) Supercell structure for the graphene size of  = 4 and  = 140, which is the smallest in our simulations. The length of the heat transport region is in this case 2.45 nm. (c) Schematic illustration of the graphene with the length of  = 64 000, which is the longest in our simulations. The length of the heat transport region is in this case 15.65 m.

Image of FIG. 2.
FIG. 2.

(a) Calculated temperature distributions along the length of graphene (y-axis) as a function of time (x-axis) in the NEMD simulations for the graphene supercell size of  = 4 and  = 48 000. (b) Spatial-averaged temperature evolutions for the hot () and cold () thermostat regions, and the heat transport region (at 300 K). (c) Temperature distributions along the length of graphene in the initial state (0 ps) of  = 300 K (black thin solid line), after 5 ns (green dotted line), 10 ns (blue dashed line), and in the steady state after 15 ns (magenta dotted-dashed line) and 20 ns (red thick solid line). (d) Cumulative energy per supercell width that flows along the heat transport direction in graphene as a function of time. After reaching the steady state, the constant energy per time flows, as shown in (d) by the linearly fit (red dashed) line.

Image of FIG. 3.
FIG. 3.

Cumulative energies that flow along the heat transport direction in graphene per supercell width as a function of time for the graphene supercells of  = 4 and (a)  = 1000, (b) 2000, (c) 4000, (d) 8000, (e) 16 000, (f)32 000, (g) 48 000, and (h) 64 000. After reaching the steady state, the constant energy per time flows as shown by the linearly fit (red dashed) lines. The estimated times to reach the steady states are indicated by the (blue) vertical lines in (a)–(h). (i) The times to reach the steady states (black filled circles) and our simulation times (red filled squares) are shown as a function of the length of graphene.

Image of FIG. 4.
FIG. 4.

(a) Calculated lattice thermal conductivities (κ) of graphene at room temperature as a function of the length of graphene for the supercell widths of  = 4 (black filled circles) and  = 40 (green filled squares). The (green) solid line indicates the ballistic thermal transport limit, and the (green) dot-dashed line is the macroscopic thermal conductivity obtained in this study. The experimental data given in Ref. are indicated by the (red) cross symbols. The length-dependent thermal conductivities obtained from the higher-order heat transport equation are plotted by the (blue) dashed line. (b) The inverse of the calculated lattice thermal conductivity ( ) of graphene as a function of the inverse of (1/).

Loading

Article metrics loading...

/content/aip/journal/jap/114/5/10.1063/1.4817175
2013-08-02
2014-04-20
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Length-dependent lattice thermal conductivity of graphene and its macroscopic limit
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/5/10.1063/1.4817175
10.1063/1.4817175
SEARCH_EXPAND_ITEM