1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Thermal conductivity of argon at high pressure from first principles calculations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/6/10.1063/1.4817901
1.
1. D. G. Cahill, “ Extremes of heat conduction: Pushing the boundaries of the thermal conductivity of materials,” MRS Bull. 37, 855863 (2012).
http://dx.doi.org/10.1557/mrs.2012.201
2.
2. G. M. Manthilake, N. de Koker, D. J. Frost, and C. A. McCammon, “ Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core,” Proc. Natl. Acad. Sci. U.S.A. 108, 1790117904 (2011).
http://dx.doi.org/10.1073/pnas.1110594108
3.
3. Y. Xu, T. J. Shankland, S. Linhardt, D. C. Rubie, F. Langenhorst, and K. Klasinski, “ Thermal diffusivity and conductivity of olivine, wadsleyite, and ringwoodite to 20 GPa and 1373 K,” Phys. Earth Planet. Inter. 143–144, 321336 (2004).
http://dx.doi.org/10.1016/j.pepi.2004.03.005
4.
4. P. Beck, A. F. Goncharov, V. V. Struzhkin, B. Militzer, H. k. Mao, and R. J. Hemley, “ Measurement of thermal diffusivity at high pressure using a transient heating technique,” Appl. Phys. Lett. 91, 181914 (2007).
http://dx.doi.org/10.1063/1.2799243
5.
5. K. Ohta, T. Yagi, N. Taketoshi, K. Hirose, T. Komabayashi, T. Baba, Y. Ohishi, and J. Hernlund, “ Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core†mantle boundary,” Earth Planet. Sci. Lett. 349–350, 109115 (2012).
http://dx.doi.org/10.1016/j.epsl.2012.06.043
6.
6. W.-P. Hsieh, B. Chen, J. Li, P. Keblinski, and D. G. Cahill, “ Pressure tuning of the thermal conductivity of the layered muscovite crystal,” Phys. Rev. B 80, 180302 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.180302
7.
7. T. Yagi, K. Ohta, K. Kobayashi, N. Taketoshi, K. Hirose, and T. Baba, “ Thermal diffusivity measurement in a diamond anvil cell using a light pulse thermoreflectance technique,” Meas. Sci. Technol. 22, 024011 (2011).
http://dx.doi.org/10.1088/0957-0233/22/2/024011
8.
8. W.-P. Hsieh, M. D. Losego, P. V. Braun, S. Shenogin, P. Keblinski, and D. G. Cahill, “ Testing the minimum thermal conductivity model for amorphous polymers using high pressure,” Phys. Rev. B 83, 174205 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174205
9.
9. B. Chen, W.-P. Hsieh, D. G. Cahill, D. R. Trinkle, and J. Li, “ Thermal conductivity of compressed H2O to 22 GPa: A test of the Leibfried-Schlömann equation,” Phys. Rev. B 83, 132301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.132301
10.
10. A. F. Goncharov, M. Wong, D. A. Dalton, J. G. O. Ojwang, V. V. Struzhkin, Z. Konôpková, and P. Lazor, “ Thermal conductivity of argon at high pressures and high temperatures,” J. Appl. Phys. 111, 112609 (2012).
http://dx.doi.org/10.1063/1.4726207
11.
11. S. Donnelly and J. Evans, Fundamental Aspects of Inert Gases in Solids (Springer, 1991), Vol. 279.
12.
12. K. Iakoubovskii, K. Mitsuishi, and K. Furuya, “ Structure and pressure inside Xe nanoparticles embedded in Al,” Phys. Rev. B 78, 064105 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.064105
13.
13. P. Garcia, P. Martin, G. Carlot, E. Castelier, M. Ripert, C. Sabathier, C. Valot, F. D'Acapito, J.-L. Hazemann, O. Proux, and V. Nassif, “ A study of xenon aggregates in uranium dioxide using X-ray absorption spectroscopy,” J. Nucl. Mater. 352, 136143 (2006).
http://dx.doi.org/10.1016/j.jnucmat.2006.02.047
14.
14. M. G. Norton, C. B. Carter, E. L. Fleischer, and J. W. Mayer, “ Solid krypton in MgO,” J. Mater. Res. 7, 31713174 (1992).
http://dx.doi.org/10.1557/JMR.1992.3171
15.
15. K. V. Tretiakov and S. Scandolo, “ Thermal conductivity of solid argon at high pressure and high temperature: A molecular dynamics study,” J. Chem. Phys. 121, 1117711182 (2004).
http://dx.doi.org/10.1063/1.1812754
16.
16. P. G. Klemens, “ Thermal conductivity and lattice vibrational modes,” Solid State Phys. 7, 198 (1958).
http://dx.doi.org/10.1016/S0081-1947(08)60551-2
17.
17. M. Manga and R. Jeanloz, “ Thermal conductivity of corundum and periclase and implications for the lower mantle,” J. Geophys. Res. 102, 29993008, doi:10.1029/96JB02696 (1997).
http://dx.doi.org/10.1029/96JB02696
18.
18. R. Ross, P. Andersson, B. Sundqvist, and G. Backstrom, “ Thermal conductivity of solids and liquids under pressure,” Rep. Prog. Phys. 47, 1347 (1984).
http://dx.doi.org/10.1088/0034-4885/47/10/002
19.
19. M. Roufosse and P. G. Klemens, “ Thermal conductivity of complex dielectric crystals,” Phys. Rev. B 7, 53795386 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.5379
20.
20. J. S. Dugdale and D. K. C. MacDonald, “ Lattice thermal conductivity,” Phys. Rev. 98, 17511752 (1955).
http://dx.doi.org/10.1103/PhysRev.98.1751
21.
21. D. A. Broido, A. Ward, and N. Mingo, “ Lattice thermal conductivity of silicon from empirical interatomic potentials,” Phys. Rev. B 72, 014308 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014308
22.
22. P. Howell, “ Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon,” J. Chem. Phys. 137, 224111 (2012).
http://dx.doi.org/10.1063/1.4767516
23.
23. A. Chernatynskiy, C. Flint, S. Sinnott, and S. Phillpot, “ Critical assessment of UO2 classical potentials for thermal conductivity calculations,” J. Mater. Sci. 47, 7693 (2012).
http://dx.doi.org/10.1007/s10853-011-6230-0
24.
24. Y. Chen, A. Chernatynskiy, D. Brown, P. K. Schelling, E. Artacho, and S. R. Phillpot, “ Critical assessment of classical potentials for MgSiO3 perovskite with application to thermal conductivity calculations,” Phys. Earth Planet. Inter. 210–211, 7589 (2012).
http://dx.doi.org/10.1016/j.pepi.2012.08.002
25.
25. M. Omini and A. Sparavigna, “ Beyond the isotropic-model approximation in the theory of thermal conductivity,” Phys. Rev. B 53, 90649073 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.9064
26.
26. M. Ross, “ The repulsive forces in dense argon,” J. Chem. Phys. 73, 44454450 (1980).
http://dx.doi.org/10.1063/1.440681
27.
27. H. Shimizu, H. Tashiro, T. Kume, and S. Sasaki, “ High-pressure elastic properties of solid argon to 70 GPa,” Phys. Rev. Lett. 86, 45684571 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4568
28.
28. P. Loubeyre, “ Three-body-exchange interaction in dense rare gases,” Phys. Rev. B 37, 54325439 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.5432
29.
29. J. A. Barker, “ High pressure equation of state for solid argon from interatomic potentials,” J. Chem. Phys. 86, 15091511 (1987).
http://dx.doi.org/10.1063/1.452187
30.
30. Y. A. Freiman and S. M. Tretyak, “ Many-body interactions and high-pressure equations of state in rare-gas solids,” Low Temp. Phys. 33, 545552 (2007).
http://dx.doi.org/10.1063/1.2746249
31.
31. D. A. Broido, L. Lindsay, and A. Ward, “ Thermal conductivity of diamond under extreme pressure: A first-principles study,” Phys. Rev. B 86, 115203 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115203
32.
32. X. Tang and J. Dong, “ Lattice thermal conductivity of MgO at conditions of Earth's interior,” Proc. Natl. Acad. Sci. 107, 45394543 (2010).
http://dx.doi.org/10.1073/pnas.0907194107
33.
33. A. D. McLean, B. Liu, and J. A. Barker, “ Ab initio calculation of argon–argon potential,” J. Chem. Phys. 89, 63396347 (1988).
http://dx.doi.org/10.1063/1.455400
34.
34. J. Harl and G. Kresse, “ Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory,” Phys. Rev. B 77, 045136 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045136
35.
35. I. Kwon, L. A. Collins, J. D. Kress, and N. Troullier, “ First-principles study of solid Ar and Kr under high compression,” Phys. Rev. B 52, 1516515169 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.15165
36.
36. T. Iitaka and T. Ebisuzaki, “ First-principles calculation of elastic properties of solid argon at high pressures,” Phys. Rev. B 65, 012103 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.012103
37.
37. T. Tsuchiya and K. Kawamura, “ First-principles study of systematics of high-pressure elasticity in rare gas solids, Ne, Ar, Kr, and Xe,” J. Chem. Phys. 117, 58595865 (2002).
http://dx.doi.org/10.1063/1.1502241
38.
38. G. Kresse and J. Hafner, “ Ab initio molecular dynamics for liquid metals,” Phys. Rev. B 47, 558561 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
39.
39. G. Kresse and J. Hafner, “ Ab initio molecular-dynamics simulation of the liquid-metal 21 amorphous-semiconductor transition in germanium,” Phys. Rev. B 49, 1425114269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
40.
40. G. Kresse and J. Furthmüller, “ Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 1116911186 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
41.
41. G. Kresse and J. Furthmüller, “ Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comp. Mater. Sci. 6, 1550 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
42.
42. P. E. Blöchl, “ Projector augmented-wave method,” Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
43.
43. G. Kresse and D. Joubert, “ From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
44.
44. S. Grimme, “ Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comput. Chem. 27, 17871799 (2006).
http://dx.doi.org/10.1002/jcc.20495
45.
45. A. Chernatynskiy and S. R. Phillpot, “ Evaluation of computational techniques for solving the Boltzmann transport equation for lattice thermal conductivity calculations,” Phys. Rev. B 82, 134301 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134301
46.
46. J. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1962).
47.
47. M. Omini and A. Sparavigna, “ Heat transport in dielectric solids with diamond structure,” Nuovo Cimento D 19, 15371563 (1997).
48.
48. A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer, “ Ab initio theory of the lattice thermal conductivity in diamond,” Phys. Rev. B 80, 125203 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125203
49.
49. M. Omini and A. Sparavigna, “ An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity,” Physica B 212(2), 101112 (1995).
http://dx.doi.org/10.1016/0921-4526(95)00016-3
50.
50. K. V. Tretiakov and S. Scandolo, “ Thermal conductivity of solid argon from molecular dynamics simulations,” J. Chem. Phys. 120, 37653769 (2004).
http://dx.doi.org/10.1063/1.1642611
51.
51. B. Fultz, “ Vibrational thermodynamics of materials,” Prog. Mater. Sci. 55, 247352 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2009.05.002
52.
52. M. Ross, H. K. Mao, P. M. Bell, and J. A. Xu, “ The equation of state of dense argon: A comparison of shock and static studies,” J. Chem. Phys. 85, 10281033 (1986).
http://dx.doi.org/10.1063/1.451346
53.
53. D. Errandonea, R. Boehler, S. Japel, M. Mezouar, and L. R. Benedetti, “ Structural transformation of compressed solid Ar: An x-ray diffraction study to 114 GPa,” Phys. Rev. B 73, 092106 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.092106
54.
54. M. L. Klein, G. G. Chell, V. V. Goldman, and G. K. Horton, “ Volume dependence of self consistent phonon energies,” J. Phys. C 3, 806 (1970).
http://dx.doi.org/10.1088/0022-3719/3/4/008
55.
55. M. L. Klein, G. K. Horton, and J. L. Feldman, “ Thermodynamic properties of solid Ar, Kr, and Xe based upon a short-range central force and the conventional perturbation expansion of the partition function,” Phys. Rev. 184, 968978 (1969).
http://dx.doi.org/10.1103/PhysRev.184.968
56.
56. R. Boehler, M. Ross, P. Söderlind, and D. B. Boercker, “ High-pressure melting curves of argon, krypton, and xenon: Deviation from corresponding states theory,” Phys. Rev. Lett. 86, 57315734 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5731
57.
57. T. Sun and P. B. Allen, “ Lattice thermal conductivity: Computations and theory of the high-temperature breakdown of the phonon-gas model,” Phys. Rev. B 82, 224305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.224305
58.
58. S. Grimme, S. Ehrlich, and L. Goerigk, “ Effect of the damping function in dispersion corrected density functional theory,” J. Comput. Chem. 32(7), 14561465 (2011).
http://dx.doi.org/10.1002/jcc.21759
59.
59. L. Goerigk and S. Grimme, “ Efficient and accurate double-hybrid-meta-GGA density functionals: Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions,” J. Chem. Theory Comput. 7(2), 291309 (2011).
http://dx.doi.org/10.1021/ct100466k
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/6/10.1063/1.4817901
Loading
/content/aip/journal/jap/114/6/10.1063/1.4817901
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/6/10.1063/1.4817901
2013-08-09
2015-03-30

Abstract

We present calculations of the thermal conductivity of fcc Argon at high pressures (pressure range is 10–150 GPa, temperatures range is 400–1200 K) from first principles in the framework of density functional theory and solution of the Boltzmann Transport Equation. Local density approximation (LDA) and generalized gradient approximation (GGA) produce similar thermal conductivities, with differences accounted by the known overbinding and underbinding of the LDA and GGA, correspondingly. Thermal conductivities at all considered pressures and temperatures are found to be consistent with the results of previous molecular dynamics simulations based on classical 2-body potentials. However, they are not consistent with recent experimental findings. Possible reasons for this disagreement are discussed. In addition, in light of our calculations, we critically examine analytically tractable approximations for thermal conductivity as applied to solid argon.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/6/1.4817901.html;jsessionid=1ackq9riavnp8.x-aip-live-03?itemId=/content/aip/journal/jap/114/6/10.1063/1.4817901&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal conductivity of argon at high pressure from first principles calculations
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/6/10.1063/1.4817901
10.1063/1.4817901
SEARCH_EXPAND_ITEM