1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Quantum conductance of armchair graphene nanopores with edge impurities
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/7/10.1063/1.4816335
1.
1. A. K. Geim and K. S. Novoselov, Nature Mater. 6(3 ), 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. A. K. Geim, Science 324(5934 ), 15301534 (2009).
http://dx.doi.org/10.1126/science.1158877
3.
3. H. Li, C. Xu, N. Srivastava, and K. Banerjee, IEEE Trans. Electron Devices 56(9 ), 17991821 (2009).
http://dx.doi.org/10.1109/TED.2009.2026524
4.
4. F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, and J. J. Palacios, Phys. Rev. B 74, 195417 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195417
5.
5. Y. Wu and P. A. Childs, Nanoscale Res. Lett. 6, 62 (2011).
http://dx.doi.org/10.1007/s11671-010-9791-y
6.
6. S. Hong, Y. Yoon, and J. Guo, Appl. Phys. Lett. 92, 083107 (2008).
http://dx.doi.org/10.1063/1.2885095
7.
7. H. Li, L. Wang, and Y. Zheng, J. Appl. Phys. 105, 013703 (2009).
http://dx.doi.org/10.1063/1.3054449
8.
8. H. Yin, W. Li, X. Hu, and R. Tao, J. Appl. Phys. 107, 103706 (2010).
http://dx.doi.org/10.1063/1.3391273
9.
9. C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.205501
10.
10. C. J. Russo and J. A. Golovchenko, Proc. Natl. Acad. Sci. U.S.A. 109(16 ), 59535957 (2012).
http://dx.doi.org/10.1073/pnas.1119827109
11.
11. A. Baskin and P. Král, Sci. Rep. 1, 36 (2011).
http://dx.doi.org/10.1038/srep00036
12.
12. K. Suenaga and M. Koshino, Nature 468(7327 ), 10881090 (2010).
http://dx.doi.org/10.1038/nature09664
13.
13. X.-L. Wei, Y.-P. Chen, W.-L. Liu, and J.-X. Zhong, Phys. Lett. A 376, 559562 (2012).
http://dx.doi.org/10.1016/j.physleta.2011.10.055
14.
14. D. Jiang, V. R. Cooper, and S. Dai, Nano Lett. 9, 4019 (2009).
http://dx.doi.org/10.1021/nl9021946
15.
15. S. Blankenburg, M. Bieri, R. Fasel, K. Müllen, C. A. Pignedoli, and D. Passerone, Small 6, 2266 (2010).
http://dx.doi.org/10.1002/smll.201001126
16.
16. H. Sint, B. Wang, and P. Král, J. Am. Chem. Soc. 130, 16448 (2008).
http://dx.doi.org/10.1021/ja804409f
17.
17. C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. T. Johnson, and M. Drndić, Nano Lett. 10, 29152921 (2010).
http://dx.doi.org/10.1021/nl101046t
18.
18. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. Vandersypen, and C. Dekker, Nano Lett. 10, 31633167 (2010).
http://dx.doi.org/10.1021/nl102069z
19.
19. T. Nelson, B. Zhang, and O. V. Prezhdo, Nano Lett. 10, 3237 (2010).
http://dx.doi.org/10.1021/nl9035934
20.
20. K. K. Saha, M. Drndić, and B. K. Nikolić, Nano Lett. 12, 5055 (2012).
http://dx.doi.org/10.1021/nl202870y
21.
21. T. C. Li and S. P. Lu, Phys. Rev. B 77, 085408 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085408
22.
22. V. M. Pereira, Phys. Rev. B 77, 115109 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115109
23.
23. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005).
24.
24. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F: Met. Phys. 15, 851 (1985).
http://dx.doi.org/10.1088/0305-4608/15/4/009
25.
25. Y. P. Chen, Y. E. Xie, and X. H. Yan, J. Appl. Phys. 103, 063711 (2008).
http://dx.doi.org/10.1063/1.2894910
26.
26. Z. F. Wang, Q. W. Shi, Q. Li, X. Wang, J. G. Hou, H. Zheng, Y. Yao, and J. Chen, Appl. Phys. Lett. 91, 053109 (2007).
http://dx.doi.org/10.1063/1.2761266
27.
27. Z. Xu, Q.-S. Zheng, and G. Chen, Appl. Phys. Lett. 90, 223115 (2007).
http://dx.doi.org/10.1063/1.2745268
28.
28. L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 54, 2600 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.2600
29.
29. J.-Y. Yan, P. Zhang, B. Sun, H.-Z. Lu, Z. Wang, S. Duan, and X.-G. Zhao, Phys. Rev. B 79, 115403 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115403
30.
30. R. Kundu, Mod. Phys. Lett. B 25, 163173 (2011).
http://dx.doi.org/10.1142/S0217984911025663
31.
31. Y. Wu, Ph.D. thesis, University of Birmingham, 2011.
32.
32. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).
http://dx.doi.org/10.1063/1.365394
33.
33.See supplementary material at http://dx.doi.org/10.1063/1.4816335 for additional figures describing: (S1, S2) LDOS distribution at E = 0 of aGNP-V and aGNP-M, (S3, S4) averaged transmission spectra of aGNP-V vs. U and ΔT, (S5, S6) averaged transmission spectra of aGNP-M vs. U and ΔT, and (S7, S8, S9, S10) transmission spectra of perfect (i.e., without impurity) aGNP-U, aGNP-V, aGNP-∩, and aGNP-M for different ribbon widths. [Supplementary Material]
34.
34. X. H. Zhang, L. F. Huang, X. L. Wang, J. Lan, and Z. Zeng, Comput. Mater. Sci. 62, 9398 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.05.022
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4816335
Loading
/content/aip/journal/jap/114/7/10.1063/1.4816335
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/7/10.1063/1.4816335
2013-08-15
2014-09-02

Abstract

The quantum conductance of armchair graphene nanopores (aGNPs) with edge impurities is investigated using the tight-binding model and non-equilibrium Green's function method. We find that aGNPs are particularly interesting since their transmission spectra can be easily tuned by pore-edge shaping to produce a variety of electronic transport characteristics. We first examine the local density of states at individual impurity sites. We then study the quantum conductance of aGNPs with various transmission spectra in response to perturbations to on-site energies and hopping coefficients of edge atoms. Insights into transport properties of aGNPs are provided and implications of these findings for designing aGNP devices in interconnection and sensing applications are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/7/1.4816335.html;jsessionid=2n0qbtapm63h4.x-aip-live-06?itemId=/content/aip/journal/jap/114/7/10.1063/1.4816335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum conductance of armchair graphene nanopores with edge impurities
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4816335
10.1063/1.4816335
SEARCH_EXPAND_ITEM