1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/7/10.1063/1.4816434
1.
1.U.S. Department of Energy, “ Solid-State Lighting Research and Development: Manufacturing Roadmap,” 2012, available online at http://www1.eere.energy.gov/buildings/ssl/techroadmaps.html.
2.
2.U.S. Department of Energy, “ Solid-State Lighting Research and Development: Multi-Year Program Plan,” 2012, available online at http://www1.eere.energy.gov/buildings/ssl/techroadmaps.html.
3.
3.Synopsys, Inc., Sentaurus Device User Guide, Version C-2009.06, June 2009.
4.
4.Ioffe Institute, Semiconductor Parameter Database, available online at http://www.ioffe.ru/SVA/NSM/Semicond/GaN/index.html.
5.
5. I. Vurgaftman and J. R. Meyer, “ Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94, 3675 (2003).
http://dx.doi.org/10.1063/1.1600519
6.
6. M. Grupen and K. Hess, “ Simulation of carrier transport and nonlinearities in quantum-well laser diodes,” IEEE J. Quantum Electron. 34(1 ), 120 (1998).
http://dx.doi.org/10.1109/3.655016
7.
7. F. Bernardini and V. Fiorentini, “ Macroscopic polarization and band offsets at nitride heterojunctions,” Phys. Rev. B 57(16 ), R9427 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R9427
8.
8. J. Pal, G. Tse, V. Haxha, and M. A. Migliorato, “ Second-order piezoelectricity in wurtzite III-N semiconductors,” Phys. Rev. B 84, 085211 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085211
9.
9. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, and T. Mukai. “ Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76(1 ), 22 (2000).
http://dx.doi.org/10.1063/1.125643
10.
10. J. Piprek and S. Nakamura, “ Physics of high-power InGaN/GaN lasers,” IEE Proc.-Optoelectron. 149(4 ), 145 (2002).
http://dx.doi.org/10.1049/ip-opt:20020441
11.
11. W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, J.-F. Carlin, and N. Grandjean, “ Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109(9 ), 093106 (2011).
http://dx.doi.org/10.1063/1.3585872
12.
12. N. K. Dutta and R. J. Nelson, “ The case for Auger recombination in InGaAsP,” J. Appl. Phys. 53(1 ), 74 (1982).
http://dx.doi.org/10.1063/1.329942
13.
13. A. S. Polkovnikov and G. G. Zegrya, “ Auger recombination in semiconductor quantum wells,” Phys. Rev. B 58(7 ), 4039 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.4039
14.
14. K. T. Delaney, P. Rinke, and C. G. Van de Walle, “ Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett. 94(19 ), 191109 (2009).
http://dx.doi.org/10.1063/1.3133359
15.
15. F. Bertazzi, M. Goano, and E. Bellotti, “ A numerical study of Auger recombination in bulk InGaN,” Appl. Phys. Lett. 97(23 ), 231118 (2010).
http://dx.doi.org/10.1063/1.3525605
16.
16. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “ Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett. 98, 161107 (2011).
http://dx.doi.org/10.1063/1.3570656
17.
17. F. Bertazzi, M. Goano, and E. Bellotti, “ Numerical analysis of indirect Auger transitions in InGaN,” Appl. Phys. Lett. 101, 011111 (2012).
http://dx.doi.org/10.1063/1.4733353
18.
18. E. Kioupakis, Q. Yan, and C. G. Van de Walle, “ Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes,” Appl. Phys. Lett. 101(23 ), 231107 (2012).
http://dx.doi.org/10.1063/1.4769374
19.
19. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “ On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92(26 ), 261103 (2008).
http://dx.doi.org/10.1063/1.2953543
20.
20. B. Pasenov, S. W. Koch, J. Hader, J. V. Moloney, M. Sabathil, N. Linder, and S. Lutgen, “ Auger losses in GaN-based quantum wells: Microscopic theory,” Phys. Status Solidi C 6(S2 ), S864 (2009).
http://dx.doi.org/10.1002/pssc.200880865
21.
21. R. Vaxenburg, E. Lifshitz, and Al. L. Efros, “ Suppression of Auger-stimulated efficiency droop in nitride-based light emitting diodes,” Appl. Phys. Lett. 102, 031120 (2013).
http://dx.doi.org/10.1063/1.4789364
22.
22. F. Bertazzi, X. Zhou, M. Goano, E. Bellotti, and G. Ghione, “ Full-band electronic structure calculation of semiconductor nanostructures: A reduced-order approach,” available at http://arxiv.org/abs/1304.1019v1).
23.
23. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, and S. W. Koch, “ On the origin of IQE-‘droop’ in InGaN LEDs,” Phys. Status Solidi C 6(2 ), S913 (2009).
http://dx.doi.org/10.1002/pssc.200880950
24.
24. M. Brendel, A. Kruse, H. Jönen, L. Hoffmann, H. Bremers, U. Rossow, and A. Hangleiter, “ Auger recombination in GaInN/GaN quantum well laser structures,” Appl. Phys. Lett. 99(3 ), 031106 (2011).
http://dx.doi.org/10.1063/1.3614557
25.
25. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, and J. Wagner, “ Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates,” Appl. Phys. Lett. 101(13 ), 131111 (2012).
http://dx.doi.org/10.1063/1.4754688
26.
26. D. Schiavon, M. Binder, M. Peter, B. Galler, and P. Drechsel, “ Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes,” Phys. Status Solidi B 250(2 ), 283 (2013).
http://dx.doi.org/10.1002/pssb.201248286
27.
27. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “ Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14 ), 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
28.
28. M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, “ Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 95(20 ), 201108 (2009).
http://dx.doi.org/10.1063/1.3266520
29.
29. M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “ A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys. 106(11 ), 114508 (2009).
http://dx.doi.org/10.1063/1.3266014
30.
30. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. WeisbuchDirect measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110, 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
31.
31. F. Bertazzi, M. Goano, X. Zhou, M. Calciati, G. Ghione, M. Matsubara, and E. Bellotti, ‘“ Comment on 'Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop [Phys. Rev. Lett. 110, 177406 (2013)],'Phys. Rev. Lett. (submitted), available at http://arxiv.org/abs/1305.2512).
32.
32. J. Piprek, “ Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217 (2010).
http://dx.doi.org/10.1002/pssa.201026149
33.
33. S. Chiaria, E. Furno, M. Goano, and E. Bellotti, “ Design criteria for near-ultraviolet GaN-based light-emitting diodes,” IEEE Trans. Electron Devices 57(1 ), 60 (2010).
http://dx.doi.org/10.1109/TED.2009.2034792
34.
34. W. W. Chow, “ Modeling excitation-dependent bandstructure effects on InGaN light-emitting diode efficiency,” Opt. Express 19(22 ), 21818 (2011).
http://dx.doi.org/10.1364/OE.19.021818
35.
35. D. Saguatti, L. Bidinelli, G. Verzellesi, M. Meneghini, G. Meneghesso, E. Zanoni, R. Butendeich, and B. Hahn, “ Investigation of efficiency-droop mechanisms in multi-quantum-well InGaN/GaN blue light-emitting diodes,” IEEE Trans. Electron Devices 59(5 ), 1402 (2012).
http://dx.doi.org/10.1109/TED.2012.2186579
36.
36. A. David and M. J. Grundman, “ Influence of polarization fields in carrier lifetime and recombination rates in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 97, 033501 (2010).
http://dx.doi.org/10.1063/1.3462916
37.
37. H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, “ Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material,” Appl. Phys. Lett. 100(13 ), 131109 (2012).
http://dx.doi.org/10.1063/1.3698113
38.
38. V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “ Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Appl. Phys. Lett. 97, 251110 (2010).
http://dx.doi.org/10.1063/1.3529470
39.
39. S. Chichibu, A. Shikanai, T. Azuhata, T. Sota, A. Kuramata, K. Horino, and S. Nakamura, “ Effects of biaxial strain on exciton resonance energies of hexagonal GaN heteroepitaxial layers,” Appl. Phys. Lett. 68(26 ), 3766 (1996).
http://dx.doi.org/10.1063/1.116000
40.
40. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “ Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett. 70(8 ), 981 (1997).
http://dx.doi.org/10.1063/1.118455
41.
41. Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “ Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4 ), R1938 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R1938
42.
42. T. Mukai, M. Yamada, and S. Nakamura, “ Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes,” Jpn. J. Appl. Phys. 38, 3976 (1999).
http://dx.doi.org/10.1143/JJAP.38.3976
43.
43. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “ Suppression of nonradiative recombination by v-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency,” Phys. Rev. Lett. 95(12 ), 127402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.127402
44.
44. B. Monemar and B. E. Sernelius, “ Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91(18 ), 181103 (2007).
http://dx.doi.org/10.1063/1.2801704
45.
45. X. A. Cao, Y. Yang, and H. Guo, “ On the origin of efficiency roll-off in InGaN-based light-emitting diodes,” J. Appl. Phys. 104, 093108 (2008).
http://dx.doi.org/10.1063/1.3009967
46.
46. J. Hader, J. V. Moloney, and S. W. Koch, “ Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes,” Appl. Phys. Lett. 96(22 ), 221106 (2010).
http://dx.doi.org/10.1063/1.3446889
47.
47. B.-J. Ahn, T.-S. Kim, Y. Dong, M.-T. Hong, J.-H. Song, J.-H. Song, H.-K. Yuh, S.-C. Choi, D.-K. Bae, and Y. Moon, “ Experimental determination of current spill-over and its effect on the efficiency droop in InGaN/GaN blue-light-emitting-diodes,” Appl. Phys. Lett. 100(3 ), 031905 (2012).
http://dx.doi.org/10.1063/1.3678029
48.
48. Q. Dai, Q. Shan, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, “ On the symmetry of efficiency-versus-carrier-concentration curves in GaInN/GaN light-emitting diodes and relation to droop-causing mechanisms,” Appl. Phys. Lett. 98(3 ), 033506 (2011).
http://dx.doi.org/10.1063/1.3544584
49.
49. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “ Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91(18 ), 183507 (2007).
http://dx.doi.org/10.1063/1.2800290
50.
50. I. V. Rozhansky and D. A. Zakheim, “ Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A 204(1 ), 227 (2007).
http://dx.doi.org/10.1002/pssa.200673567
51.
51. J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M.-H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “ Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett. 94(1 ), 011113 (2009).
http://dx.doi.org/10.1063/1.3058687
52.
52. S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, H.-C. Kuo, and S.-C. Wang, “ Low efficiency droop in blue-green m-plane InGaN/GaN light,” Appl. Phys. Lett. 96(23 ), 231101 (2010).
http://dx.doi.org/10.1063/1.3449557
53.
53. J. Lee, X. Li, X. Ni, Ü. Özgür, H. Morkoç, T. Paskova, G. Mulholland, and K. R. Evans, “ On carrier spillover in c- and m-plane InGaN light emitting diodes,” Appl. Phys. Lett. 95(20 ), 201113 (2009).
http://dx.doi.org/10.1063/1.3266833
54.
54. J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, “ On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett. 93(12 ), 121107 (2008).
http://dx.doi.org/10.1063/1.2988324
55.
55. J. P. Liu, J.-H. Ryou, R. D. Dupuis, J. Han, G. D. Shen, and H. B. Wang, “ Barrier effect on hole transport and carrier distribution in InGaN/GaN,” Appl. Phys. Lett. 93(2 ), 021102 (2008).
http://dx.doi.org/10.1063/1.2957667
56.
56. D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. F. Schubert, H. Shim, M.-H. Kim, and C. Sone, “ Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes,” Appl. Phys. Lett. 99(25 ), 251115 (2011).
http://dx.doi.org/10.1063/1.3671395
57.
57. C.-K. Li and Y.-R. Wu, “ Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron Devices 59(2 ), 400 (2012).
http://dx.doi.org/10.1109/TED.2011.2176132
58.
58. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “ InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3 ), 031110 (2010).
http://dx.doi.org/10.1063/1.3465658
59.
59. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, and A. Matulionis, “ Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108, 033112 (2010).
http://dx.doi.org/10.1063/1.3460271
60.
60. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, “ Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes,” Appl. Phys. Lett. 96(13 ), 133502 (2010).
http://dx.doi.org/10.1063/1.3367897
61.
61. D.-S. Shin, D.-P. Han, J.-Y. Oh, and J.-I. Shim, “ Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence,” Appl. Phys. Lett. 100(15 ), 153506 (2012).
http://dx.doi.org/10.1063/1.3703313
62.
62. N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “ Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91(24 ), 243506 (2007).
http://dx.doi.org/10.1063/1.2807272
63.
63. M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, “ Reduced nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys. Lett. 94(4 ) 041103 (2009).
http://dx.doi.org/10.1063/1.3073860
64.
64. A. Laubsch, W. Bergbauer, M. Sabathil, M. Strassburg, H. Lugauer, M. Peter, T. Meyer, G. Brüderl, J. Wagner, N. Linder, K. Streubel, and B. Hahn, “ Luminescence properties of thick InGaN quantum-wells,” Phys. Status Solidi C 6(2 ), S885 (2009).
http://dx.doi.org/10.1002/pssc.200880893
65.
65. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, “ Bulk GaN based violet light-emitting diodes with high efficiency at very high current density,” Appl. Phys. Lett. 101, 223509 (2012).
http://dx.doi.org/10.1063/1.4769228
66.
66. S. Tanaka, Y. Zhao, I. Koslow, C.-C. Pan, H.-T. Chen, J. Sonoda, S. P. DenBaars, and S. Nakamura, “ Droop improvement in high current range on PSS-LEDs,” Electron. Lett. 47(5 ), 335 (2011).
http://dx.doi.org/10.1049/el.2010.3306
67.
67. C. S. Xia, Z. M. Simon Li, Z. Q. Li, Y. Sheng, Z. H. Zhang, W. Lu, and L. W. Cheng, “ Optimal number of quantum wells for blue InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 100, 263504 (2012).
http://dx.doi.org/10.1063/1.4731625
68.
68. D. A. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V. Khokhlev, and S. Yu. Karpov, “ Efficiency droop suppression in InGaN-based blue LEDs: Experiment and numerical modeling,” Phys. Status Solidi A 209(3 ), 456460 (2012).
http://dx.doi.org/10.1002/pssa.201100317
69.
69. D. S. Meyaard, Q. Shan, J. Cho, E. F. Schubert, S.-H. Han, M.-H. Kim, C. Sone, S. J. Oh, and J. K. Kim, “ Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities,” Appl. Phys. Lett. 100(8 ), 081106 (2012).
http://dx.doi.org/10.1063/1.3688041
70.
70. A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al Suleiman, S. Merzsch, J. Wei1, S. Li, H. H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, “ The nanorod approach: GaN NanoLEDs for solid state lighting,” Phys. Status Solidi C 8(7–8 ), 22962301 (2011).
http://dx.doi.org/10.1002/pssc.201000989
71.
71. S. Albert, A. Bengoechea-Encabo, X. Kong, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, “ Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns,” Appl. Phys. Lett. 102, 181103 (2013).
http://dx.doi.org/10.1063/1.4804293
72.
72. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, “ Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer,” Appl. Phys. Lett. 96(22 ), 221105 (2010).
http://dx.doi.org/10.1063/1.3441373
73.
73. Y.-Y. Zhang, X.-L. Zhu, Y.-A. Yin, and J. Ma, “ Performance enhancement of near-UV light-emitting diodes with an InAlN/GaN superlattice electron-blocking layer,” IEEE Electron Device Lett. 33(7 ), 994 (2012).
http://dx.doi.org/10.1109/LED.2012.2197593
74.
74. R. B. Chung, C. Han, C.-C. Pan, N. Pfaff, J. S. Speck, S. P. DenBaars, and S. Nakamura, “ The reduction of efficiency droop by Al0.82In0.18N/GaN superlattice electron blocking layer in (0001) oriented GaN-based light emitting diodes,” Appl. Phys. Lett. 101(13 ), 131113 (2012).
http://dx.doi.org/10.1063/1.4756791
75.
75. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “ Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93(4 ), 041102 (2008).
http://dx.doi.org/10.1063/1.2963029
76.
76. Y.-K. Fu, R.-H. Jiang, Y.-H. Lu, B.-C. Chen, R. Xuan, Y.-H. Fang, C.-F. Lin, Y.-K. Su, and J.-F. Chen, “ The effect of trimethylgallium flows in the AlInGaN barrier on optoelectronic characteristics of near ultraviolet light-emitting diodes grown by atmospheric pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 98(12 ), 121115 (2011).
http://dx.doi.org/10.1063/1.3571440
77.
77. P.-M. Tu, C.-Y. Chang, S.-C. Huang, C.-H. Chiu, J.-R. Chang, W.-T. Chang, D.-S. Wuu, H.-W. Zan, C.-C. Lin, H.-C. Kuo, and C.-P. Hsu, “ Investigation of efficiency droop for InGaN-based UV light-emitting diodes with InAlGaN barrier,” Appl. Phys. Lett. 98(21 ), 211107 (2011).
http://dx.doi.org/10.1063/1.3591967
78.
78. Y.-K. Kuo, J.-Y. Chang, M.-C. Tsai, and S.-H. Yen, “ Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1 ), 011116 (2009).
http://dx.doi.org/10.1063/1.3176406
79.
79. H. J. Chung, R. J. Choi, M. H. Kim, J. W. Han, Y. M. Park, Y. S. Kim, H. S. Paek, C. S. Sone, Y. J. Park, J. K. Kim, and E. F. Schubert, “ Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers,” Appl. Phys. Lett. 95(24 ), 241109 (2009).
http://dx.doi.org/10.1063/1.3276066
80.
80. Y.-K. Kuo, T.-H. Wang, J.-Y. Chang, and M.-C. Tsai, “ Advantages of InGaN light-emitting diodes with GaN-InGaN-GaN barriers,” Appl. Phys. Lett. 99(9 ), 091107 (2011).
http://dx.doi.org/10.1063/1.3633268
81.
81. Y.-K. Kuo, T.-H. Wang, and J.-Y. Chang, “ Advantages of blue InGaN light-emitting diodes with InGaN-AlGaN-InGaN barriers,” Appl. Phys. Lett. 100(3 ), 031112 (2012).
http://dx.doi.org/10.1063/1.3678341
82.
82. C. H. Wang, S. P. Chang, P. H. Ku, J. C. Li, Y. P. Lan, C. C. Lin, H. C. Yang, H. C. Kuo, T. C. Lu, S. C. Wang, and C. Y. Chang, “ Hole transport improvement in InGaN/GaN light-emitting diodes by graded-composition multiple quantum barriers,” Appl. Phys. Lett. 99(17 ), 171106 (2011).
http://dx.doi.org/10.1063/1.3655903
83.
83. C. S. Xia, Z. M. S. Li, W. Lu, Z. H. Zhang, Y. Sheng, and L. W. Cheng, “ Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier,” Appl. Phys. Lett. 99(23 ), 233501 (2011).
http://dx.doi.org/10.1063/1.3665252
84.
84. S. P. Chang, C. H. Wang, C. H. Chiu, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “ Characteristics of efficiency droop in GaN-based light emitting diodes with an insertion layer between the multiple quantum wells and n-GaN layer,” Appl. Phys. Lett. 97(25 ), 251114 (2010).
http://dx.doi.org/10.1063/1.3531957
85.
85. Z. Li, M. Lestrade, Y. Xiao, and Z. S. Li, “ Improvement of performance in p-side down InGaN/GaN light-emitting diodes with graded electron blocking layer,” Jpn. J. Appl. Phys. 50, 080212 (2011).
http://dx.doi.org/10.1143/JJAP.50.080212
86.
86. F. Akyol, D. N. Nath, S. Krishnamoorthy, P. S. Park, and S. Rajan, “ Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes,” Appl. Phys. Lett. 100(11 ), 111118 (2012).
http://dx.doi.org/10.1063/1.3694967
87.
87. X. Li, X. Ni, J. Lee, M. Wu, Ü. Ozgur, H. Morkoç, T. Paskova, G. Mulholland, and K. R. Evans, “ Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes,” Appl. Phys. Lett. 95(12 ), 121107 (2009).
http://dx.doi.org/10.1063/1.3236538
88.
88. Y. Zhao, S. Tanaka, C.-C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “ High-Power Blue-Violet Semipolar (2021) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2,” Appl. Phys. Express 4, 082104 (2011).
http://dx.doi.org/10.1143/APEX.4.082104
89.
89. V. Harle, B. Hahn, H. J. Lugauer, H. Bolay, S. Baderet et al., “ Optical semiconductor device comprising a multiple quantum well structure,” U.S. patent 6,849,881 (2005).
90.
90. Y.-K. Kuo, M.-C. Tsai, S.-H. Yen, T.-C. Hsu, and Y.-J. Shen, “ Effect of p-type last barrier on efficiency droop of blue InGaN light-emitting diodes,” IEEE J. Quantum Electron. 46(8 ), 1214 (2010).
http://dx.doi.org/10.1109/JQE.2010.2045104
91.
91. T. Lu, S. Li, C. Liu, K. Zhang, Y. Xu, J. Tong, L. Wu, H. Wang, X. Yang, Y. Yin, G. Xiao, and Y. Zhou, “ Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer,” Appl. Phys. Lett. 100(14 ), 141106 (2012).
http://dx.doi.org/10.1063/1.3700722
92.
92. L. Zhang, K. Ding, N. X. Liu, T. B. Wei, X. L. Ji, P. Ma, J. C. Yan, J. X. Wang, Y. P. Zeng, and J. M. Li, “ Theoretical study of polarization-doped GaN-based light-emitting diodes,” Appl. Phys. Lett. 98(10 ), 101110 (2011).
http://dx.doi.org/10.1063/1.3565173
93.
93. L. Zhang, X. C. Wei, N. X. Liu, H. X. Lu, J. P. Zeng, J. X. Wang, Y. P. Zeng, and J. M. Li, “ Improvement of efficiency of GaN-based polarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 98(24 ), 241111 (2011).
http://dx.doi.org/10.1063/1.3601469
94.
94. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “ Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures,” Science 327(5961 ), 60 (2010).
http://dx.doi.org/10.1126/science.1183226
95.
95. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “ Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer,” Appl. Phys. Lett. 97(26 ), 261103 (2010).
http://dx.doi.org/10.1063/1.3531753
96.
96. Y. Y. Zhang and Y. A. Yin, “ Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer,” Appl. Phys. Lett. 99(22 ), 221103 (2011).
http://dx.doi.org/10.1063/1.3653390
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4816434
Loading
/content/aip/journal/jap/114/7/10.1063/1.4816434
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/7/10.1063/1.4816434
2013-08-15
2014-10-22

Abstract

Physical mechanisms causing the efficiency droop in InGaN/GaN blue light-emitting diodes and remedies proposed for droop mitigation are classified and reviewed. Droop mechanisms taken into consideration are Auger recombination, reduced active volume effects, carrier delocalization, and carrier leakage. The latter can in turn be promoted by polarization charges, inefficient hole injection, asymmetry between electron and hole densities and transport properties, lateral current crowding, quantum-well overfly by ballistic electrons, defect-related tunneling, and saturation of radiative recombination. Reviewed droop remedies include increasing the thickness or number of the quantum wells, improving the lateral current uniformity, engineering the quantum barriers (including multi-layer and graded quantum barriers), using insertion or injection layers, engineering the electron-blocking layer (EBL) (including InAlN, graded, polarization-doped, and superlattice EBL), exploiting reversed polarization (by either inverted epitaxy or N-polar growth), and growing along semi- or non-polar orientations. Numerical device simulations of a reference device are used through the paper as a proof of concept for selected mechanisms and remedies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/7/1.4816434.html;jsessionid=1e1pa9lgb8br6.x-aip-live-03?itemId=/content/aip/journal/jap/114/7/10.1063/1.4816434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4816434
10.1063/1.4816434
SEARCH_EXPAND_ITEM