1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Study of the mechanism and rate of exciton dissociation at the donor-acceptor interface in bulk-heterojunction organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/7/10.1063/1.4818813
1.
1. N. Yeh and P. Yeh, Renewable Sustainable Energy Rev. 21, 421 (2013).
http://dx.doi.org/10.1016/j.rser.2012.12.046
2.
2. M. T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).
http://dx.doi.org/10.1002/adma.201100792
3.
3. I. Bruder, thesis, Max-Planck-Institut für Festkörperforschung, 2010.
4.
4. M. R. Narayan and J. Singh, Eur. Phys. J. B 86, 1 (2013).
http://dx.doi.org/10.1140/epjb/e2012-30614-0
5.
5. M. R. Narayan and J. Singh, “Effect of simultaneous excitation of both singlet and triplet excitons on the operation of organic solar cells,” J. Chem. Phys. (unpublished).
6.
6. M. R. Narayan and J. Singh, Phys. Status Solidi C 9, 2386 (2012).
http://dx.doi.org/10.1002/pssc.201200227
7.
7. K. Tvingstedt, K. Vandewal, F. Zhang, and O. Inganaüs, J. Phys. Chem. C 114, 21824 (2010).
http://dx.doi.org/10.1021/jp107587h
8.
8. C.-W. Chu, V. Shrotriya, G. Li, and Y. Yang, Appl. Phys. Lett. 88, 153504 (2006).
http://dx.doi.org/10.1063/1.2194207
9.
9. W. Cai, X. Gong, and Y. Cao, Sol. Energy Mater. Sol. Cells 94, 114 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.10.005
10.
10. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010).
http://dx.doi.org/10.1002/adma.201001339
11.
11. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, and L. Yu, J. Am. Chem. Soc 131, 7792 (2009).
http://dx.doi.org/10.1021/ja901545q
12.
12. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 593 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
13.
13. J. Roncali, Acc. Chem. Res. 42, 1719 (2009).
http://dx.doi.org/10.1021/ar900041b
14.
14. B. Kippelen and J. L. Brédas, Energy Environ. Sci. 2, 251 (2009).
http://dx.doi.org/10.1039/b812502n
15.
15. J. L. Brédas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009).
http://dx.doi.org/10.1021/ar900099h
16.
16. C. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
17.
17. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
18.
18. H. Ohkita and S. Ito, Polymer 52, 4397 (2011).
http://dx.doi.org/10.1016/j.polymer.2011.06.061
19.
19. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
20.
20. S. M. Sze, Semiconductor Devices: Physics and Technology (John Wiley & Sons, New York, 2008).
21.
21. X.-Y. Zhu, Q. Yang, and M. Muntwiler, Acc. Chem. Res. 42, 1779 (2009).
http://dx.doi.org/10.1021/ar800269u
22.
22. M. J. Kendrick, A. Neunzert, M. M. Payne, B. Purushothaman, B. D. Rose, J. E. Anthony, M. M. Haley, and O. Ostroverkhova, J. Phys. Chem. C 116, 18108 (2012).
http://dx.doi.org/10.1021/jp305913s
23.
23. J. Knoester and V. M. Agranovich, Frenkel and Charge-Transfer Excitons in Organic Solids (Academic Press, 2003), Vol. 31.
24.
24. P. L. Taylor, A Quantum Approach to the Solid State (Prentice-Hall, 1970).
25.
25. R. Mauer, thesis, Johannes Gutenberg-University Mainz, 2012.
26.
26. L. Koster, E. Smits, V. Mihailetchi, and P. Blom, Phys. Rev. B 72, 085205 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085205
27.
27. L. Koster, V. Mihailetchi, and P. Blom, Appl. Phys. Lett. 88, 093511 (2006).
http://dx.doi.org/10.1063/1.2181635
28.
28. M. Lenes, G. J. A. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. Blom, Adv. Mater. 20, 2116 (2008).
http://dx.doi.org/10.1002/adma.200702438
29.
29. J. D. Servaites, M. A. Ratner, and T. J. Marks, Appl. Phys. Lett. 95, 163302 (2009).
http://dx.doi.org/10.1063/1.3243986
30.
30. J. Singh, Phys. Status Solidi C 7, 984 (2010).
http://dx.doi.org/10.1002/pssc.200982735
31.
31. J. Singh, Excitation Energy Transfer Processes in Condensed Matter: Theory and Applications (Plenum Press, 1994).
32.
32. J. Singh, Phys. Rev. B 76, 085205 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085205
33.
33. J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.-Y. Kim, and K. Cho, Appl. Phys. Lett. 91, 112111 (2007).
http://dx.doi.org/10.1063/1.2778548
34.
34. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
35.
35. A. J. Moulé, J. B. Bonekamp, and K. Meerholz, J. Appl. Phys. 100, 094503 (2006).
http://dx.doi.org/10.1063/1.2360780
36.
36. R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, and M. Lögdlund, Nature 397, 121 (1999).
http://dx.doi.org/10.1038/16393
37.
37. J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Adv. Mater. 23, 1810 (2011).
http://dx.doi.org/10.1002/adma.201003991
38.
38. Y. Zhou, M. Eck, and M. Krüger, Organic-Inorganic Hybrid Solar Cells: State of the Art, Challenges and Perspectives (Intech, 2011).
39.
39. M. Wright and A. Uddin, Sol. Energy Mater. Sol. Cells 107, 87 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.07.006
40.
40. E. Arici, N. S. Sariciftci, and D. Meissner, Encyclopedia Nanosci. Nanotechnol. 3, 929 (2004).
41.
41. S. Günes and N. S. Sariciftci, Inorg. Chim. Acta 361, 581 (2008).
http://dx.doi.org/10.1016/j.ica.2007.06.042
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4818813
Loading
/content/aip/journal/jap/114/7/10.1063/1.4818813
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/7/10.1063/1.4818813
2013-08-20
2014-10-22

Abstract

In this paper, a comprehensive study is carried out on the dissociation mechanism of excitons in bulk-heterojunction organic solar cells. It is proposed that at the donor-acceptor interface, a Frenkel exciton relaxes to a charge transfer exciton and then dissociates into free charge carriers with the aid of molecular vibrational energy. The interaction operator between the charge transfer exciton and molecular vibrational energy is derived and used to formulate and calculate the rates of dissociation of singlet and triplet excitons into free charge carriers. The dissociation rates are found to be dependent on the binding energy, lowest unoccupied molecular orbital offset between the donor and acceptor, the phonon energy, reduced excitonic mass, excitonic Bohr radius, and the dielectric constant of the organic material. Using the proposed dissociation mechanism, three points have also been highlighted that could provide possible reasons as to why the performance of bulk-heterojunction organic solar cell is low.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/7/1.4818813.html;jsessionid=a4mp0iu4uk0bh.x-aip-live-03?itemId=/content/aip/journal/jap/114/7/10.1063/1.4818813&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Study of the mechanism and rate of exciton dissociation at the donor-acceptor interface in bulk-heterojunction organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4818813
10.1063/1.4818813
SEARCH_EXPAND_ITEM