1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/7/10.1063/1.4818914
1.
1. E. D. Yildirim, H. Ayan, V. N. Vasilets, A. Fridman, S. Guceri, and W. Sun, Plasma Processes Polym. 5, 58 (2008).
http://dx.doi.org/10.1002/ppap.200700041
2.
2. Y. M. Shin, H. Shin, and Y. M. Lim, Macromol. Res. 18, 472 (2010).
http://dx.doi.org/10.1007/s13233-010-0507-z
3.
3. G. Meneghello, D. J. Parker, B. J. Ainsworth, S. P. Perera, J. B. Chaudhuri, M. J. Ellis, and P. A. De Bank, J. Membr. Sci. 344, 55 (2009).
http://dx.doi.org/10.1016/j.memsci.2009.07.034
4.
4. H. Shearer, M. J. Ellis, S. P. Perera, and J. B. Chaudhuri, Tissue Eng. 12, 2717 (2006).
http://dx.doi.org/10.1089/ten.2006.12.2717
5.
5. A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Biomaterials 15, 55 (1994).
http://dx.doi.org/10.1016/0142-9612(94)90197-X
6.
6. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Biomaterials 26, 2603 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.06.051
7.
7. Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, and K. D. Yao, Biomaterials 24, 3859 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00209-6
8.
8. H. Zhu, J. Ji, M. A. Barbosa, and J. Shen, J. Biomed. Mater. Res., Part B: Appl. Biomater. 71B, 159 (2004).
http://dx.doi.org/10.1002/jbm.b.30080
9.
9. Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials 26, 1253 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.04.031
10.
10. Y. Wan, J. Yang, J. Yang, J. Bei, and S. Wang, Biomaterials 24, 3757 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00251-5
11.
11. Z. Ding, J. Chen, S. Gao, J. Chang, J. Zhang, and E. T. Kang, Biomaterials 25, 1059 (2004).
http://dx.doi.org/10.1016/S0142-9612(03)00615-X
12.
12. L. Safinia, K. Wilson, A. Mantalaris, and A. Bismarck, J. Biomed. Mater. Res. 87A, 632 (2008).
http://dx.doi.org/10.1002/jbm.a.31731
13.
13. W. He, Z. W. Ma, T. Yong, W. E. Teo, and S. Ramakrishna, Biomaterials 26, 7606 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.05.049
14.
14. H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, Biomaterials 29, 3574 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.05.014
15.
15. I. K. Shim, M. R. Jung, K. H. Kim, Y. J. Seol, Y. J. Park, W. H. Park, and S. J. Lee, J. Biomed. Mater. Res., Part B: Appl. Biomater. 95B, 150 (2010).
http://dx.doi.org/10.1002/jbm.b.31695
16.
16. B. Lindberg, R. Maripuu, K. Siegbahn, R. Larsson, C. G. Golander, and J. C. Eriksson, J. Colloid Interface Sci. 95, 308 (1983).
http://dx.doi.org/10.1016/0021-9797(83)90190-X
17.
17. T. Asher, A. Inberg, E. Glickman, N. Fishelson, and Y. Shacham-Diamand, Electrochim. Acta 54, 6053 (2009).
http://dx.doi.org/10.1016/j.electacta.2009.02.089
18.
18. W. Cui, X. Li, C. Xie, H. Zhuang, S. Zhou, and J. Weng, Biomaterials 31, 4620 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.02.050
19.
19. F. He, J. Li, and J. Ye, Colloids Surf., B 103, 209 (2013).
http://dx.doi.org/10.1016/j.colsurfb.2012.10.018
20.
20. W. Zhang, Y. Luo, H. Wang, J. Jiang, S. Pu, and P. K. Chu, Acta Biomater. 4, 2028 (2008).
http://dx.doi.org/10.1016/j.actbio.2008.05.012
21.
21. J. Gao, L. Niklason, and R. Langer, J. Biomed. Mater. Res. 42, 417 (1998).
http://dx.doi.org/10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D
22.
22. R. S. Bhati, D. P. Mukherjee, K. J. McCarthy, S. H. Rogers, D. F. Smith, and S. W. Shalaby, J. Biomed. Mater. Res. 56, 74 (2001).
http://dx.doi.org/10.1002/1097-4636(200107)56:1<74::AID-JBM1070>3.0.CO;2-M
23.
23. S. R. Wu, G. S. Sheu, and S. S. Shyu, J. Appl. Polym. Sci. 62, 1347 (1996).
http://dx.doi.org/10.1002/(SICI)1097-4628(19961128)62:9<1347::AID-APP5>3.0.CO;2-H
24.
24. Y. P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, 1991), pp. 5275, 128–138.
25.
25. S. Yang and H. Yin, Plasma Chem. Plasma Process. 27, 23 (2007).
http://dx.doi.org/10.1007/s11090-006-9041-3
26.
26. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, Spectrochim. Acta, Part B 61, 2 (2006).
http://dx.doi.org/10.1016/j.sab.2005.10.003
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4818914
Loading
/content/aip/journal/jap/114/7/10.1063/1.4818914
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/7/10.1063/1.4818914
2013-08-21
2015-01-29

Abstract

Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/7/1.4818914.html;jsessionid=4y7qskub71xu.x-aip-live-03?itemId=/content/aip/journal/jap/114/7/10.1063/1.4818914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/7/10.1063/1.4818914
10.1063/1.4818914
SEARCH_EXPAND_ITEM