Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010) and references therein.
2. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Exp. 15, 11272 (2007).
3. M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107, 013710 (2010).
4. X. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
5. M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, Appl. Phys. Lett. 94, 191107 (2009).
6. M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010).
7. Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, J. Appl. Phys. 104, 084518 (2008).
8. R. Jakomin, M. de Kersauson, M. El Kurdi, L. Largeau, O. Mauguin, G. Beaudoin, S. Sauvage, R. Ossikovski, G. Ndong, M. Chaigneau, I. Sagnes, and P. Boucaud, Appl. Phys. Lett. 98, 091901 (2011).
9. Y.-Y. Fang, J. Tolle, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, V. R. D'Costa, and J. Menéndez, Appl. Phys. Lett. 90, 061915 (2007);
9. J. Menéndez and J. Kouvetakis, Appl. Phys. Lett. 85, 1175 (2004).
10. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, Appl. Phys. Lett. 92, 231916 (2008).
11. Y. Ishikawa and K. Wada, Thin Solid Films 518, S83 (2010).
12.See, for example, and references therein, J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
13. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, Appl. Phys. Lett. 98, 061108 (2011).
14. E. Kasper, M. Oehme, J. Werner, T. Aguirov, and M. Kittler, Front. Optoelectron. 5, 256 (2012).
15. M. Oehme, M. Gollhofer, D. Widmann, M. Schmid, M. Kaschel, E. Kasper, and J. Schulze, Opt. Exp. 21, 2206 (2013).
16. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
17. V. Le Thanh, Surf. Sci. 492, 255 (2001) and references therein.
18. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Pelange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).
19. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
20. J.-M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, J. Appl. Phys. 95, 5905 (2004).
21. J.-M. Hartmann, A. M. Papon, V. Destefanis, and T. Billon, J. Cryst. Growth 310, 5287 (2008).
22. B. S. Meyerson, IBM J. Res. Develop. 44, 132 (2000).
23. V. Le Thanh, V. Aubry-Fortuna, Y. Zheng, D. Bouchier, C. Guedj, and G. Hincelin, Thin Solid Films 294, 59 (1997).
24. V. Le Thanh, V. Aubry-Fortuna, D. Bouchier, A. Younsi, and G. Hincelin, Surf. Sci. 369, 85 (1996).
25. M. Halbwax, D. Bouchier, V. Yam, D. Débarre, Lam H. Nguyen, Y. Zheng, P. Rosner, M. Benamara, H. P. Strunk, and C. Clerc, J. Appl. Phys. 97, 064907 (2005).
26. M. Stoffel, L. Simon, J. L. Bischoff, D. Aubel, L. Kubler, and G. Castelein, Thin Solid Films 380, 32 (2000).
27. V. Le Thanh, D. Bouchier, and G. Hincelin, J. Appl. Phys. 87, 3700 (2000).
28. P. M. Mooney, F. K. LeGoues, and J. L. Jordan-Sweet, Appl. Phys. Lett. 65, 2845 (1994).
29. M. G. Lagally, in Method of Experimental Physics, Vol. 22, Solid State Physics: Surfaces, edited by R. L. Park and M. G. Lagally (Academic, New York, 1985).
30. J. Liu, H. J. Kim, O. Hul'ko, Y. H. Xie, S. Sahni, P. Bandaru, and E. Yablonovitch, J. Appl. Phys. 96, 916 (2004).
31. J. Liu, D. D. Cannon, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, Phys. Rev. B 70, 155309 (2004).
32. L. Souriau, T. Atanasova, V. Terzieva, A. Moussa, M. Caymax, R. Loo, M. Meuris, and W. Vandervorst, J. Electrochem. Soc. 155, H677 (2008).
33. M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995).
34. M. Albrecht, S. Christiansen, J. Michler, W. Dorsch, H. P. Strunk, P. O. Hansson, and E. Bauser, Appl. Phys. Lett. 67, 1232 (1995).
35. P. Boucaud, L. Wu, C. Guedj, F. H. Julien, I. Sagnes, Y. Campidelli, and L. Garchery, J. Appl. Phys. 80, 1414 (1996).
36. J. Jung, S. F. Yu, O. O. Olubuyide, J. L. Hoyt, D. A. Antoniadis, M. L. Lee, and E. A. Fitzgerald, Appl. Phys. Lett. 84, 3319 (2004).
37. D.-S. Yoon, J. S. Roh, S.-M. Lee, and H. K. Baik, Prog. Mater. Sci. 48, 275 (2003).
38. S. Becker and R. G. Gordon, Appl. Phys. Lett. 82, 2239 (2003).
39. C. Y. Ting, Thin Solid Films 119, 11 (1984).
40. Y. Dong, Y. Lin, S. Li, S. McCoy, and G. Xia, J. Appl. Phys. 111, 044909 (2012).
41. A. Spiesser, I. Slipukhina, T. Dau, E. Arras, V. Le Thanh, L. Michez, P. Pochet, H. Saito, S. Yuasa, M. Jamet, and J. Derrien, Phys. Rev. B 84, 165203 (2011).
42. M. T. Dau, V. Le Thanh, T. G. Le, A. Spiesser, M. Petit, L. A. Michez, and R. Daineche, Appl. Phys. Lett. 99, 151908 (2011).
43. M. T. Dau, V. Le Thanh, T. G. Le, A. Spiesser, M. Petit, L. A. Michez, T. H. Ngo, D. L. Vu, Q. L. Nguyen, and P. Sebban, Thin Solid Films 520, 3410 (2012).

Data & Media loading...


Article metrics loading...



Tensile-strained and -doped Ge has emerged as a potential candidate for the realization of optoelectronic devices that are compatible with the mainstream silicon technology. Tensile-strained Ge/Si epilayers can be obtained by using the difference of thermal expansion coefficients between Ge and Si. We have combined various surface, structural, and compositional characterizations to investigate the growth mode and the strain state in Ge/Si epilayers grown by molecular-beam epitaxy. The Ge growth was carried out using a two-step approach: a low-temperature growth to produce relaxed and smooth buffer layers, which is followed by a high-temperature growth to get high quality Ge layers. The existence of a substrate temperature window from 260 to 300 °C is evidenced, which allows to completely suppress the Ge/Si Stranski-Krastanov growth. As a consequence of the high temperature growth, a tensile strain lying in the range of 0.22%–0.24% is obtained. Concerning the effect of thermal annealing, it is shown that cyclic annealing may allow increasing the tensile strain up to 0.30%. Finally, we propose an approach to use carbon adsorption to suppress Si/Ge interdiffusion, which represents one of the main obstacles to overcome in order to realize pure Ge-based optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd