Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/8/10.1063/1.4818945
1.
1. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010) and references therein.
http://dx.doi.org/10.1364/OL.35.000679
2.
2. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Exp. 15, 11272 (2007).
http://dx.doi.org/10.1364/OE.15.011272
3.
3. M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107, 013710 (2010).
http://dx.doi.org/10.1063/1.3279307
4.
4. X. Sun, J. F. Liu, L. C. Kimerling, and J. Michel, Appl. Phys. Lett. 95, 011911 (2009).
http://dx.doi.org/10.1063/1.3170870
5.
5. M. El Kurdi, T. Kociniewski, T.-P. Ngo, J. Boulmer, D. Débarre, P. Boucaud, J. F. Damlencourt, O. Kermarrec, and D. Bensahel, Appl. Phys. Lett. 94, 191107 (2009).
http://dx.doi.org/10.1063/1.3138155
6.
6. M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, Appl. Phys. Lett. 96, 041909 (2010).
http://dx.doi.org/10.1063/1.3297883
7.
7. Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, J. Appl. Phys. 104, 084518 (2008).
http://dx.doi.org/10.1063/1.3005886
8.
8. R. Jakomin, M. de Kersauson, M. El Kurdi, L. Largeau, O. Mauguin, G. Beaudoin, S. Sauvage, R. Ossikovski, G. Ndong, M. Chaigneau, I. Sagnes, and P. Boucaud, Appl. Phys. Lett. 98, 091901 (2011).
http://dx.doi.org/10.1063/1.3559231
9.
9. Y.-Y. Fang, J. Tolle, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, V. R. D'Costa, and J. Menéndez, Appl. Phys. Lett. 90, 061915 (2007);
http://dx.doi.org/10.1063/1.2472273
9. J. Menéndez and J. Kouvetakis, Appl. Phys. Lett. 85, 1175 (2004).
http://dx.doi.org/10.1063/1.1784032
10.
10. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, Appl. Phys. Lett. 92, 231916 (2008).
http://dx.doi.org/10.1063/1.2945629
11.
11. Y. Ishikawa and K. Wada, Thin Solid Films 518, S83 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.10.062
12.
12.See, for example, and references therein, J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, Thin Solid Films 520, 3354 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.121
13.
13. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, Appl. Phys. Lett. 98, 061108 (2011).
http://dx.doi.org/10.1063/1.3555439
14.
14. E. Kasper, M. Oehme, J. Werner, T. Aguirov, and M. Kittler, Front. Optoelectron. 5, 256 (2012).
http://dx.doi.org/10.1007/s12200-012-0235-4
15.
15. M. Oehme, M. Gollhofer, D. Widmann, M. Schmid, M. Kaschel, E. Kasper, and J. Schulze, Opt. Exp. 21, 2206 (2013).
http://dx.doi.org/10.1364/OE.21.002206
16.
16. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
17.
17. V. Le Thanh, Surf. Sci. 492, 255 (2001) and references therein.
http://dx.doi.org/10.1016/S0039-6028(01)01455-8
18.
18. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Pelange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).
http://dx.doi.org/10.1063/1.121584
19.
19. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
http://dx.doi.org/10.1063/1.125187
20.
20. J.-M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, and S. Laval, J. Appl. Phys. 95, 5905 (2004).
http://dx.doi.org/10.1063/1.1699524
21.
21. J.-M. Hartmann, A. M. Papon, V. Destefanis, and T. Billon, J. Cryst. Growth 310, 5287 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.08.062
22.
22. B. S. Meyerson, IBM J. Res. Develop. 44, 132 (2000).
http://dx.doi.org/10.1147/rd.441.0132
23.
23. V. Le Thanh, V. Aubry-Fortuna, Y. Zheng, D. Bouchier, C. Guedj, and G. Hincelin, Thin Solid Films 294, 59 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)09331-5
24.
24. V. Le Thanh, V. Aubry-Fortuna, D. Bouchier, A. Younsi, and G. Hincelin, Surf. Sci. 369, 85 (1996).
http://dx.doi.org/10.1016/S0039-6028(96)00879-5
25.
25. M. Halbwax, D. Bouchier, V. Yam, D. Débarre, Lam H. Nguyen, Y. Zheng, P. Rosner, M. Benamara, H. P. Strunk, and C. Clerc, J. Appl. Phys. 97, 064907 (2005).
http://dx.doi.org/10.1063/1.1854723
26.
26. M. Stoffel, L. Simon, J. L. Bischoff, D. Aubel, L. Kubler, and G. Castelein, Thin Solid Films 380, 32 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01465-6
27.
27. V. Le Thanh, D. Bouchier, and G. Hincelin, J. Appl. Phys. 87, 3700 (2000).
http://dx.doi.org/10.1063/1.372403
28.
28. P. M. Mooney, F. K. LeGoues, and J. L. Jordan-Sweet, Appl. Phys. Lett. 65, 2845 (1994).
http://dx.doi.org/10.1063/1.112511
29.
29. M. G. Lagally, in Method of Experimental Physics, Vol. 22, Solid State Physics: Surfaces, edited by R. L. Park and M. G. Lagally (Academic, New York, 1985).
30.
30. J. Liu, H. J. Kim, O. Hul'ko, Y. H. Xie, S. Sahni, P. Bandaru, and E. Yablonovitch, J. Appl. Phys. 96, 916 (2004).
http://dx.doi.org/10.1063/1.1738530
31.
31. J. Liu, D. D. Cannon, Y. Ishikawa, K. Wada, D. T. Danielson, S. Jongthammanurak, J. Michel, and L. C. Kimerling, Phys. Rev. B 70, 155309 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.155309
32.
32. L. Souriau, T. Atanasova, V. Terzieva, A. Moussa, M. Caymax, R. Loo, M. Meuris, and W. Vandervorst, J. Electrochem. Soc. 155, H677 (2008).
http://dx.doi.org/10.1149/1.2953495
33.
33. M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995).
http://dx.doi.org/10.1063/1.114112
34.
34. M. Albrecht, S. Christiansen, J. Michler, W. Dorsch, H. P. Strunk, P. O. Hansson, and E. Bauser, Appl. Phys. Lett. 67, 1232 (1995).
http://dx.doi.org/10.1063/1.115017
35.
35. P. Boucaud, L. Wu, C. Guedj, F. H. Julien, I. Sagnes, Y. Campidelli, and L. Garchery, J. Appl. Phys. 80, 1414 (1996).
http://dx.doi.org/10.1063/1.362939
36.
36. J. Jung, S. F. Yu, O. O. Olubuyide, J. L. Hoyt, D. A. Antoniadis, M. L. Lee, and E. A. Fitzgerald, Appl. Phys. Lett. 84, 3319 (2004).
http://dx.doi.org/10.1063/1.1719275
37.
37. D.-S. Yoon, J. S. Roh, S.-M. Lee, and H. K. Baik, Prog. Mater. Sci. 48, 275 (2003).
http://dx.doi.org/10.1016/S0079-6425(02)00012-9
38.
38. S. Becker and R. G. Gordon, Appl. Phys. Lett. 82, 2239 (2003).
http://dx.doi.org/10.1063/1.1565699
39.
39. C. Y. Ting, Thin Solid Films 119, 11 (1984).
http://dx.doi.org/10.1016/0040-6090(84)90153-6
40.
40. Y. Dong, Y. Lin, S. Li, S. McCoy, and G. Xia, J. Appl. Phys. 111, 044909 (2012).
http://dx.doi.org/10.1063/1.3687923
41.
41. A. Spiesser, I. Slipukhina, T. Dau, E. Arras, V. Le Thanh, L. Michez, P. Pochet, H. Saito, S. Yuasa, M. Jamet, and J. Derrien, Phys. Rev. B 84, 165203 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165203
42.
42. M. T. Dau, V. Le Thanh, T. G. Le, A. Spiesser, M. Petit, L. A. Michez, and R. Daineche, Appl. Phys. Lett. 99, 151908 (2011).
http://dx.doi.org/10.1063/1.3651488
43.
43. M. T. Dau, V. Le Thanh, T. G. Le, A. Spiesser, M. Petit, L. A. Michez, T. H. Ngo, D. L. Vu, Q. L. Nguyen, and P. Sebban, Thin Solid Films 520, 3410 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.167
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/8/10.1063/1.4818945
Loading
/content/aip/journal/jap/114/8/10.1063/1.4818945
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/8/10.1063/1.4818945
2013-08-22
2016-12-06

Abstract

Tensile-strained and -doped Ge has emerged as a potential candidate for the realization of optoelectronic devices that are compatible with the mainstream silicon technology. Tensile-strained Ge/Si epilayers can be obtained by using the difference of thermal expansion coefficients between Ge and Si. We have combined various surface, structural, and compositional characterizations to investigate the growth mode and the strain state in Ge/Si epilayers grown by molecular-beam epitaxy. The Ge growth was carried out using a two-step approach: a low-temperature growth to produce relaxed and smooth buffer layers, which is followed by a high-temperature growth to get high quality Ge layers. The existence of a substrate temperature window from 260 to 300 °C is evidenced, which allows to completely suppress the Ge/Si Stranski-Krastanov growth. As a consequence of the high temperature growth, a tensile strain lying in the range of 0.22%–0.24% is obtained. Concerning the effect of thermal annealing, it is shown that cyclic annealing may allow increasing the tensile strain up to 0.30%. Finally, we propose an approach to use carbon adsorption to suppress Si/Ge interdiffusion, which represents one of the main obstacles to overcome in order to realize pure Ge-based optoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/8/1.4818945.html;jsessionid=bdIJ0Z7xd0zb97H1wYle2TZs.x-aip-live-02?itemId=/content/aip/journal/jap/114/8/10.1063/1.4818945&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/8/10.1063/1.4818945&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/8/10.1063/1.4818945'
Right1,Right2,Right3,