1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/114/8/10.1063/1.4819084
1.
1. Y. Glinec, J. Faure, L. Le Dain, S. Darbon, T. Hosokai, J. J. Santos, E. Lefebvre, J. P. Rousseau, F. Burgy, B. Mercier, and V. Malka, Phys. Rev. Lett. 94, 025003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.025003
2.
2. R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, Rev. Sci. Instrum. 76, 083701 (2005).
http://dx.doi.org/10.1063/1.1989407
3.
3. L. M. Chen, M. Kando, J. Ma, H. Kotaki, Y. Fukuda, Y. Hayashi, I. Daito, T. Homma, K. Ogura, M. Mori, A. S. Pirozhkov, J. Koga, H. Daido, S. V. Bulanov, T. Kimura, T. Tajima, and Y. Kato, Appl. Phys. Lett. 90, 211501 (2007).
http://dx.doi.org/10.1063/1.2742802
4.
4. K. Takano, K. Nemoto, T. Nayuki, Y. Oishi, T. Fujii, A. Zhidkov, E. Hotta, M. Todoriki, and S. Hasegawa, Appl. Phys. Lett. 92, 251502 (2008).
http://dx.doi.org/10.1063/1.2945283
5.
5. S. Kneip, C. McGuffey, F. Dollar, M. S. Bloom, V. Chvykov, G. Kalintchenko, K. Krushelnick, A. Maksimchuk, S. P. D. Mangles, T. Matsuoka, Z. Najmudin, C. A. J. Palmer, J. Schreiber, W. Schumaker, A. G. R. Thomas, and V. Yanovsky, Appl. Phys. Lett. 99, 093701 (2011).
http://dx.doi.org/10.1063/1.3627216
6.
6. S. Fourmaux, S. Corde, K. Ta Phuoc, P. Lassonde, G. Lebrun, S. Payeur, F. Martin, S. Sebban, V. Malka, A. Rousse, and J. C. Kieffer, Opt. Lett. 36, 2426 (2011).
http://dx.doi.org/10.1364/OL.36.002426
7.
7. Y. Oishi, T. Nayuki, C. Nakajima, T. Fujii, A. Zhidkov, and K. Nemoto, Jpn. J. Appl. Phys., Part 1 49, 046602 (2010).
http://dx.doi.org/10.1143/JJAP.49.046602
8.
8. L. Lawson, Mater. Eval. 60, 1295 (2002).
9.
9. J. S. Ryu, S. W. Park, M. S. Kim, and Y. Yi, in Proc. 27th Int. Conf. IEEE Eng. Med. Biol. Soc. (2005), p. 1838.
10.
10. R. D. Swift, Proc. SPIE 2936, 124 (1997).
http://dx.doi.org/10.1117/12.266262
11.
11. H. Kuwabara, Y. Mori, and Y. Kitagawa, J. Plasma Fusion Res. 3, 003 (2008).
http://dx.doi.org/10.1585/pfr.3.003
12.
12. Y. Mori and Y. Kitagawa, Appl. Phys. B 110, 57 (2013).
http://dx.doi.org/10.1007/s00340-012-5251-y
13.
13. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1383
14.
14. S. Ootsuka, Y. Mori, T. Makino, M. Ohta, H. Kuwabara, and Y. Kitagawa, Rev. Laser Eng. 38, 386 (2010).
15.
15. J. H. Hubbell, Int. J. Appl. Radiat. Isot. 33, 1269 (1982).
http://dx.doi.org/10.1016/0020-708X(82)90248-4
16.
16. K. Fujitaka, M. Abe, and S. Abe, in 3rd Int. Symp. Adv. Nucl. Engy. Res., Global environment and Nuclear Energy (1991), p. 76.
17.
17. H. Kuwabara, Ph.D. thesis, Graduate School for the Creation of New Photonics Industries, Hamamatsu, 2008.
18.
18. V. O. Klein and Y. Nishina, Z. Phys. 52, 853 (2003).
19.
19. H. Schwoerer, B. Liesfeld, H.-P. Schlenvoigt, K.-U. Amthor, and R. Sauerbrey, Phys. Rev. Lett. 96, 014802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.014802
20.
20. Y. Mori, H. Kuwabara, K. Ishii, R. Hanayama, T. Kawashima, and Y. Kitagawa, Appl. Phys. Express 5, 056401 (2012).
http://dx.doi.org/10.1143/APEX.5.056401
21.
21. K. T. Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, Nat. Photonics 6, 308 (2012).
http://dx.doi.org/10.1038/nphoton.2012.82
22.
22. S. Chen, N. D. Powers, I. Ghebregziabher, C. M. Maharjan, C. Liu, G. Golovin, S. Banerjee, J. Zhang, N. Cunningham, A. Moorti, S. Clarke, S. Pozzi, and D. P. Umstadter, Phys. Rev. Lett. 110, 155003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.155003
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/8/10.1063/1.4819084
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Setup for backward imaging experiments. A laser (left) generating picosecond pulsed X-rays in the vacuum chamber is focused on an aluminium target. The X-rays penetrate the vacuum window and travel through a movable lead collimator (centre) to scan objects in the aluminium container (right). Backscattered X-rays reach the scintillation detector (centre, bottom).

Image of FIG. 2.

Click to view

FIG. 2.

(a) Primary X-ray spectrum. The solid curve is the fitted spectrum. (b) Beam profile of the primary X-rays.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Aluminium container (0.8-mm thick) in which the objects are hidden. The container dimension is 150 mm × 100 mm × 50 mm. (b) Inside the container are a 30-mm-thick acrylic resin block (left) and a block of either 5-mm-thick copper or 1-mm-thick lead (right).

Image of FIG. 4.

Click to view

FIG. 4.

Backscattered X-ray images show the inside of the container for (a) acrylic resin (left) and copper (Cu, right) and (b) acrylic resin (left) and lead (Pb, right). The horizontal dotted line in (a) gives the level of background noise (1 count). One measured point was obtained from 1000 shots over a 100-s interval. To confirm the data, we repeated these shots three times for case (a) and five times for case (b).

Image of FIG. 5.

Click to view

FIG. 5.

Calculation model of one-dimensional backscattering photon intensity. Top: The X-ray source and detector are located on the same side of the object, which is composed of n slabs. Bottom: The source X-ray beam enters the target at and is backscattered at depth . Over the distance , both the source and backscattered beams are attenuated by the target. The position marks the back of the object.

Image of FIG. 6.

Click to view

FIG. 6.

Comparison of experimental results with model calculations. Solid circle: experimental data from Figs. 4(a) and 4(b) . Dashed line: calculations: (a) acrylic and copper; (b) acrylic and lead. In (a) and (b), plateaus between 70 and 25 mm are from acrylic. In (a), plateau between approximately and mm is from Cu. In (b), plateau between approximately and mm is from Pb.

Image of FIG. 7.

Click to view

FIG. 7.

Backscattered spectrum from calculation model (dashed lines) compared with experiments (solid points). (a) Empty aluminium container, (b) 30-mm-thick acrylic block, (c) 5-mm-thick copper block, (d) 1-mm-thick lead block in the 0.8-mm-thick aluminium container.

Loading

Article metrics loading...

/content/aip/journal/jap/114/8/10.1063/1.4819084
2013-08-22
2014-04-24

Abstract

Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/8/1.4819084.html;jsessionid=87mmgpjfrabhl.x-aip-live-03?itemId=/content/aip/journal/jap/114/8/10.1063/1.4819084&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/8/10.1063/1.4819084
10.1063/1.4819084
SEARCH_EXPAND_ITEM