Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/8/10.1063/1.4819108
1.
1. Y. C. Chang, M. L. Huang, Y. H. Chang, Y. J. Lee, H. C. Chiu, J. Kwo, and M. Hong, Microelectron. Eng. 88, 1207 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.098
2.
2. P. F. Carcia, R. S. Mclean, and M. H. Reilly, Appl. Phys. Lett. 88, 123509 (2006).
http://dx.doi.org/10.1063/1.2188379
3.
3. C. M. Tanner, J. Choi, and J. P. Chang, J. Appl. Phys. 101, 034108 (2007).
http://dx.doi.org/10.1063/1.2432402
4.
4. M. Wolborski, M. Rooth, M. Bakowski, and A. Hallén, J. Appl. Phys. 101, 124105 (2007).
http://dx.doi.org/10.1063/1.2734956
5.
5. K. Hirama, K. Tsuge, S. Sato, T. Tsuno, Y. Jingu, S. Yamauchi, and H. Kawarada, Appl. Phys. Express 3, 044001 (2010).
http://dx.doi.org/10.1143/APEX.3.044001
6.
6. M. Kasu, H. Sato, and K. Hirama, Appl. Phys. Express 5, 025701 (2012).
http://dx.doi.org/10.1143/APEX.5.025701
7.
7. M. C. Rossi, S. Salvatori, and F. Galluzzi, J. Vac. Sci. Technol. B 16, 1725 (1998).
http://dx.doi.org/10.1116/1.590043
8.
8. J. C. Angus and C. C. Hayman, Science 241, 913 (1988).
http://dx.doi.org/10.1126/science.241.4868.913
9.
9. L. Reggiani, S. Bosi, C. Canali, F. Nava, and S. F. Kozlov, Phys. Rev. B 23, 3050 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.3050
10.
10. A. Aleksov, M. Kubovic, N. Kaeb, U. Spitzberg, A. Bergmaier, G. Dollinger, T. Bauer, M. Schreck, B. Stritzker, and E. Kohn, Diamond Relat. Mater. 12, 391 (2003).
http://dx.doi.org/10.1016/S0925-9635(02)00401-6
11.
11. H. Umezawa, T. Arima, N. Fujihara, H. Taniuchi, H. Ishizaka, M. Tachiki, C. Wild, P. Koidl, and H. Kawarad, Jpn. J. Appl. Phys., Part 1 41, 2611 (2002).
http://dx.doi.org/10.1143/JJAP.41.2611
12.
12. M. Kubovic, M. Kasu, I. Kallfass, M. Neuburger, A. Aleksov, G. Koley, M. G. Spencer, and E. Kohn, Diamond Relat. Mater. 13, 802 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.11.089
13.
13. J. D. Rameau, J. Smedley, E. M. Muller, T. E. Kidd, and P. D. Johnson, Phys. Rev. Lett. 106, 137602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.137602
14.
14. D. A. J. Moran, O. J. L. Fox, H. Mclelland, S. Russell, and P. W. May, IEEE Electron Device Lett. 32, 599 (2011).
http://dx.doi.org/10.1109/LED.2011.2114871
15.
15. J. Walker, Rep. Prog. Phys. 42, 1605 (1979).
http://dx.doi.org/10.1088/0034-4885/42/10/001
16.
16. D. Kueck, H. E. Hajj, A. Kaiser, and E. Kohn, Diamond Relat. Mater. 17, 732 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.11.007
17.
17. R. Edgington, S. Sato, Y. Ishiyama, R. Morris, R. B. Jackman, and H. Kawarada, J. Appl. Phys. 111, 033710 (2012).
http://dx.doi.org/10.1063/1.3682760
18.
18. H. Kawarada, Y. Araki, T. Sakai, T. Ogawa, and H. Umezawa, Phys. Status Solidi A 185, 79 (2001).
http://dx.doi.org/10.1002/1521-396X(200105)185:1<79::AID-PSSA79>3.0.CO;2-8
19.
19. K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, and H. Umezawa, Appl. Phys. Lett. 92, 112107 (2008).
http://dx.doi.org/10.1063/1.2889947
20.
20. K. Hirama, H. Sato, Y. Harada, H. Yamamoto, and M. Kasu, Jpn. J. Appl. Phys., Part 1 51, 090112 (2012).
http://dx.doi.org/10.1143/JJAP.51.090112
21.
21. M. Imura, K. Nakajima, M. Liao, and Y. Koide, J. Cryst. Growth 312, 1325 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.09.020
22.
22. S. H. Cheng, L. W. Sang, M. Y. Liao, J. W. Liu, M. Imura, H. D. Li, and Y. Koide, Appl. Phys. Lett. 101, 232907 (2012).
http://dx.doi.org/10.1063/1.4770059
23.
23. T. Saito, K. H. Park, K. Hirama, H. Umezawa, M. Satoh, H. Kawarada, Z. Q. Liu, K. Mitsuishi, K. Furuya, and H. Okushi, J. Electron. Mater. 40, 247 (2011).
http://dx.doi.org/10.1007/s11664-010-1500-1
24.
24. Y. Otsuka, S. Suzuki, S. Shikama, T. Maki, and T. Kobayashi, Jpn. J. Appl. Phys., Part 2 34, L551 (1995).
http://dx.doi.org/10.1143/JJAP.34.L551
25.
25. T. Ariki, S. Shikawa, S. Suzuki, Y. Otsuka, T. Maki, and T. Kobayashi, Jpn. J. Appl. Phys., Part 2 33, L888 (1994).
http://dx.doi.org/10.1143/JJAP.33.L888
26.
26. M. Imura, R. Hayakawa, E. Watanabe, M. Liao, Y. Koide, and H. Amano, Phys. Status Solidi (RRL) 5, 125 (2011).
http://dx.doi.org/10.1002/pssr.201105024
27.
27. J. W. Liu, M. Y. Liao, M. Imura, H. Oosato, E. Watanabe, and Y. Koide, Appl. Phys. Lett. 102, 112910 (2013).
http://dx.doi.org/10.1063/1.4798289
28.
28. B. S. Lim, A. Rahtu, P. D. Rouffignac, and R. G. Gordon, Appl. Phys. Lett. 84, 3957 (2004).
http://dx.doi.org/10.1063/1.1739272
29.
29. Y. Liu, H. Kim, J. J. Wang, H. Li, and R. G. Gordon, ECS Trans. 16, 471 (2008).
http://dx.doi.org/10.1149/1.2981628
30.
30. L. F. Edge, D. G. Schlom, P. Sivasubramani, R. M. Wallace, B. Holländer, and J. Schubert, Appl. Phys. Lett. 88, 112907 (2006).
http://dx.doi.org/10.1063/1.2182019
31.
31. A. D. Li, Q. Y. Shao, H. Q. Ling, J. B. Cheng, D. Wu, Z. G. Liu, N. B. Ming, C. Wang, H. W. Zhou, and B. Y. Nguyen, Appl. Phys. Lett. 83, 3540 (2003).
http://dx.doi.org/10.1063/1.1622794
32.
32. L. Miotti, K. P. Bastos, C. Driemeier, V. Edon, M. C. Hugon, B. Agius, and I. J. R. Baumvol, Appl. Phys. Lett. 87, 022901 (2005).
http://dx.doi.org/10.1063/1.1989447
33.
33. V. Edon, M. C. Hugon, B. Agius, C. Cohen, C. Cardinaud, and C. Eypert, Thin Solid Films 515, 7782 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.03.179
34.
34. V. Edon, M. C. Hugon, B. Agius, L. Miotti, C. Radtke, F. Tatsch, J. J. Ganem, I. Trimaille, and I. J. R. Baumvol, Appl. Phys. A: Mater. Sci. Process 83, 289 (2006).
http://dx.doi.org/10.1007/s00339-006-3484-5
35.
35. J. W. Liu, M. Y. Liao, M. Imura, and Y. Koide, Appl. Phys. Lett. 101, 252108 (2012).
http://dx.doi.org/10.1063/1.4772985
36.
36. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Phys. Rev. Lett. 85, 3472 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3472
37.
37. E. Talik, A. Novosselov, M. Kulpa, and A. Pajaczkowska, J. Alloys Compd. 321, 24 (2001).
http://dx.doi.org/10.1016/S0925-8388(01)01015-5
38.
38. R. Yasuhara, M. Komatsu, H. Takahashi, S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, D. Kukuruznyak, and T. Chikyow, Appl. Phys. Lett. 89, 122904 (2006).
http://dx.doi.org/10.1063/1.2356377
39.
39. S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).
http://dx.doi.org/10.1116/1.1418405
40.
40. R. Reiche, F. Yubero, J. P. Espinós, and A. R. González-Elipe, Surf. Sci. 457, 199 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00375-7
41.
41. Y. Y. Mi, Z. Yu, S. J. Wang, P. C. Lim, Y. L. Foo, A. C. H. Huan, and C. K. Ong, Appl. Phys. Lett. 90, 181925 (2007).
http://dx.doi.org/10.1063/1.2736277
42.
42. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
http://dx.doi.org/10.1116/1.591472
43.
43. W. C. Lee, T. J. King, and C. Hu, IEEE Electron Device Lett. 20, 268 (1999).
http://dx.doi.org/10.1109/55.767094
44.
44. M. T. Edmonds, C. I. Pakes, S. Mammadov, W. Zhang, A. Tadich, J. Ristein, and L. Ley, Appl. Phys. Lett. 98, 102101 (2011).
http://dx.doi.org/10.1063/1.3561760
45.
45. Y. Yun, T. Maki, H. Tanaka, Y. Shirakawa, and T. Kobayashi, Jpn. J. Appl. Phys., Part 2 37, L1293 (1998).
http://dx.doi.org/10.1143/JJAP.37.L1293
46.
46. D. K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1990).
47.
47. Ch. Manz, M. Kunzer, H. Obloh, A. Ramakrishnan, and U. Kaufmann, Appl. Phys. Lett. 74, 3993 (1999).
http://dx.doi.org/10.1063/1.124247
48.
48. T. Makimoto, K. Kumakura, T. Nishida, and N. Kobayashi, J. Electron. Mater. 31, 313 (2002).
http://dx.doi.org/10.1007/s11664-002-0149-9
49.
49. T. Hashizume, S. Ootomo, T. Inagaki, and H. Hasegawa, J. Vac. Sci. Technol. B 21, 1828 (2003).
http://dx.doi.org/10.1116/1.1585077
50.
50. J. W. Liu, A. Kobayashi, K. Ueno, S. Toyoda, A. Kikuchi, J. Ohta, H. Fujioka, H. Kumigashira, and M. Oshima, Appl. Phys. Lett. 97, 252111 (2010).
http://dx.doi.org/10.1063/1.3530445
51.
51. G. He, L. D. Zhang, M. Liu, and Z. Q. Sun, Appl. Phys. Lett. 97, 062908 (2010).
http://dx.doi.org/10.1063/1.3475015
52.
52. X. Q. Xu, X. L. Liu, Y. Guo, J. Wang, H. P. Song, S. Y. Yang, H. Y. Wei, Q. S. Zhu, and Z. G. Wang, J. Appl. Phys. 107, 104510 (2010).
http://dx.doi.org/10.1063/1.3408777
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/8/10.1063/1.4819108
Loading
/content/aip/journal/jap/114/8/10.1063/1.4819108
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/8/10.1063/1.4819108
2013-08-28
2016-12-04

Abstract

In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO films with thin AlO buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO/ALD-AlO/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 m have been investigated. The valence and conduction band offsets of the SD-LaAlO/ALD-AlO structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO/ALD-AlO/H-diamond MOS diode is smaller than 10 A cm at gate bias from −4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show -type channel and complete normally off characteristics with threshold voltages changing from −3.6 ± 0.1 to −5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 m are −7.5 mA mm and 2.3 ± 0.1 mS mm, respectively. The enhancement mode SD-LaAlO/ALD-AlO/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/8/1.4819108.html;jsessionid=lTHJgylX8dWkDGKCzPDWwUrP.x-aip-live-06?itemId=/content/aip/journal/jap/114/8/10.1063/1.4819108&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/8/10.1063/1.4819108&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/8/10.1063/1.4819108'
Right1,Right2,Right3,