Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/114/9/10.1063/1.4820384
1.
1. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao et al., “ Tuning charge transport in solution-sheared organic semiconductors using lattice strain,” Nature 480(7378), 504508 (2011).
http://dx.doi.org/10.1038/nature10683
2.
2. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, “ Inkjet printing of single-crystal films,” Nature 475(7356), 364367 (2011).
http://dx.doi.org/10.1038/nature10313
3.
3. J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin et al., “ Functionalized pentacene: Improved electronic properties from control of solid-state order,” J. Am. Chem. Soc. 123(38), 94829483 (2001).
http://dx.doi.org/10.1021/ja0162459
4.
4. J. E. Anthony, “ The larger acenes: versatile organic semiconductors,” Angew. Chem., Int. Ed. 47(3), 452483 (2008).
http://dx.doi.org/10.1002/anie.200604045
5.
5. S. Wo, R. L. Headrick, and J. E. Anthony, “ Fabrication and characterization of controllable grain boundary arrays in solution-processed small molecule organic semiconductor films,” J. Appl. Phys. 111(7), 073716 (2012).
http://dx.doi.org/10.1063/1.3698203
6.
6. J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, and A. Salleo, “ Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films,” Nature Mater. 8(12), 952958 (2009).
http://dx.doi.org/10.1038/nmat2570
7.
7. T. Sekitani, Y. Kato, S. Iba, H. Shinaoka, T. Someya, T. Sakurai, and S. Takagi, “ Bending experiment on pentacene field-effect transistors on plastic films,” Appl. Phys. Lett. 86(7), 073511 (2005).
http://dx.doi.org/10.1063/1.1868868
8.
8. F.-C. Chen, T.-D. Chen, B.-R. Zeng, and Y.-W. Chung, “ Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors,” Semicond. Sci. Technol. 26(3), 034005 (2011).
http://dx.doi.org/10.1088/0268-1242/26/3/034005
9.
9. S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, “ High mobility solution processed 6, 13-bis (triisopropyl-silylethynyl) pentacene organic thin film transistors,” Appl. Phys. Lett. 91(6), 063514 (2007).
http://dx.doi.org/10.1063/1.2768934
10.
10. C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, and Y. L. Loo, “ Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis (triisopropylsilylethynyl) pentacene,” Appl. Phys. Lett. 93(10), 103302 (2008).
http://dx.doi.org/10.1063/1.2979691
11.
11. D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, and K. Cho, “ High-mobility organic transistors based on single-crystalline microribbons of triisopropylsilylethynyl pentacene via solution-phase self-assembly,” Adv. Mater. 19(5), 678682 (2007).
http://dx.doi.org/10.1002/adma.200601259
12.
12. D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov et al., “ Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits,” Nature Mater. 7(3), 216221 (2008).
http://dx.doi.org/10.1038/nmat2122
13.
13. T. Sakanoue and H. Sirringhaus, “ Band-like temperature dependence of mobility in a solution-processed organic semiconductor,” Nature Mater. 9(9), 736740 (2010).
http://dx.doi.org/10.1038/nmat2825
14.
14. J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, and K. Cho, “ Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet,” Adv. Funct. Mater. 18(2), 229234 (2008).
http://dx.doi.org/10.1002/adfm.200700859
15.
15. J. Jang, S. Nam, K. Im, J. Hur, S. N. Cha, J. Kim, H. B. Son, H. Suh, M. A. Loth, J. E. Anthony et al., “ Highly crystalline soluble acene crystal arrays for organic transistors: Mechanism of crystal growth during dip-coating,” Adv. Funct. Mater. 22, 1005 (2012).
http://dx.doi.org/10.1002/adfm.201102284
16.
16. W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Müllen, “ A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene,” Adv. Mater. 17(6), 684689 (2005).
http://dx.doi.org/10.1002/adma.200401171
17.
17. R. L. Headrick, S. Wo, F. Sansoz, and J. E. Anthony, “ Anisotropic mobility in large grain size solution processed organic semiconductor thin films,” Appl. Phys. Lett. 92(6), 063302 (2008).
http://dx.doi.org/10.1063/1.2839394
18.
18. H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin, and Z. Bao, “ High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors,” Adv. Mater. 20(13), 25882594 (2008).
http://dx.doi.org/10.1002/adma.200703120
19.
19. D. M. DeLongchamp, R. J. Kline, Y. Jung, D. S. Germack, E. K. Lin, A. J. Moad, L. J. Richter, M. F. Toney, M. Heeney, and I. McCulloch, “ Controlling the orientation of terraced nanoscale ribbons of a poly (thiophene) semiconductor,” ACS Nano 3(4), 780787 (2009).
http://dx.doi.org/10.1021/nn800574f
20.
20. S. Wo, “ Study of grain structure and interfacial structure in organic semiconductor thin films,” Ph.D. dissertation (University of Vermont, 2011).
21.
21. L. D. Landau and B. Levich, “ Dragging of a liquid by moving plate,” Acta Physicochim. URSS 17, 42 (1942).
22.
22. B. Derjaguin, “ Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo-and motion picture film coating,” C. R. (Dokl.) Acad. Sci. URSS 39, 1316 (1943).
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4820384 for Supplementary Figures 1–8. [Supplementary Material]
24.
24. O. Teschke and M. U. Kleinke, “ Stability criteria for buckling of thin anodic films on aluminum,” Thin Solid films 226(1), 7481 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90208-7
25.
25. N. Matuda, S. Baba, and A. Kinbara, “ Internal stress, Young's modulus, and adhesion energy of carbon films on glass substrates,” Thin Solid Films 81(4), 301305 (1981).
http://dx.doi.org/10.1016/0040-6090(81)90514-9
26.
26. M. S. Park, A. Aiyar, J. O. Park, E. Reichmanis, and M. Srinivasarao, “ Solvent evaporation induced liquid crystalline phase in poly (3-hexylthiophene),” J. Am. Chem. Soc. 133(19), 72447247 (2011).
http://dx.doi.org/10.1021/ja110060m
27.
27. J. Chen, J. E. Anthony, and D. C. Martin, “ Thermally induced solid-state phase transition of bis (triisopropylsilylethynyl) pentacene crystals,” J. Phys. Chem. B 110(33), 1639716403 (2006).
http://dx.doi.org/10.1021/jp0627877
28.
28. Y. Okada, K. Sakai, T. Uemura, Y. Nakazawa, and J. Takeya, “ Charge transport and Hall effect in rubrene single-crystal transistors under high pressure,” Phys. Rev. B 84(24), 245308 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245308
http://aip.metastore.ingenta.com/content/aip/journal/jap/114/9/10.1063/1.4820384
Loading
/content/aip/journal/jap/114/9/10.1063/1.4820384
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/114/9/10.1063/1.4820384
2013-09-03
2016-09-30

Abstract

Molecular packing in laterally directed solution deposition is a strong function of variables such as printing speed, substrate temperature, and solution concentration. Knowledge of the ordering mechanisms impacts on the development of new processes and materials for improved electronic devices. Here, we present real-time synchrotron x-ray scattering results combined with optical video microscopy, revealing the stages of ordering during the deposition of organic thin films via hollow capillary writing. Limited long range ordering is observed during the initial crystallization, but it gradually develops over 3–4 s for a range of deposition conditions. Buckling of thin films is typically observed for deposition above room temperature. We infer that compressive stress originates from thermal transients related to solvent evaporation on timescales similar to the development of long range ordering. Under optimized conditions, elimination of cracks and other structural defects significantly improves the average charge carrier mobility in organic field-effect transistors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/114/9/1.4820384.html;jsessionid=3OAPVA-rrIAYHDZWXf1iNcor.x-aip-live-06?itemId=/content/aip/journal/jap/114/9/10.1063/1.4820384&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/114/9/10.1063/1.4820384&pageURL=http://scitation.aip.org/content/aip/journal/jap/114/9/10.1063/1.4820384'
Right1,Right2,Right3,