Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/10/10.1063/1.4867916
1.
1. K. Chouarbi, M. Woytasik, E. Dufour-Gergam, E. Lefeuvre, and J. Moulin, J. Electrochem. Soc. 159(10), D592D596 (2012).
http://dx.doi.org/10.1149/2.051210jes
2.
2. T. Budde and H. H. Gatzen, J. Appl. Phys. 99, 08N304 (2006).
http://dx.doi.org/10.1063/1.2176390
3.
3. A. Walther, D. Givord, N. M. Dempsey, K. Khlopkov, and O. Gutfleisch, J. Appl. Phys. 103, 043911 (2008).
http://dx.doi.org/10.1063/1.2840131
4.
4. K. H. J. Buschow, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier, North-Holland, Amsterdam, 1997), Vol. 10, p. 463.
5.
5. H. Kronmüller, K.-D. Durst, W. Ervens, and W. Fernengel, IEEE Trans. Magn. 20, 1569 (1984);
http://dx.doi.org/10.1109/TMAG.1984.1063213
5. O. Gutfleisch, K. H. Mueller, K. Khlopkov, M. Wolf, A. Yan, R. Schaefer, T. Gemming, and L. Schultz, Acta Mater. 54, 997 (2006).
http://dx.doi.org/10.1016/j.actamat.2005.10.026
6.
6. H. Kronmuller, J. Magn. Magn. Mater. 7, 341 (1978);
http://dx.doi.org/10.1016/0304-8853(78)90217-2
6. H. Kronmüller and D. Goll, J. Iron Steel Res. Int. 13, 39 (2006).
http://dx.doi.org/10.1016/S1006-706X(08)60159-4
7.
7. K. J. Strnat, G. Hoffer, J. C. Olson, W. Ostertag, and J. J. Becker, J. Appl. Phys. 38, 1001 (1967);
http://dx.doi.org/10.1063/1.1709459
7. A. E. Ray and K. J. Strnat, IEEE Trans. Magn. 8, 516 (1972).
http://dx.doi.org/10.1109/TMAG.1972.1067471
8.
8. D. Goll, I. Kleinschroth, W. Sigle, and H. Kronmuller, Appl. Phys. Lett. 76, 1054 (2000).
http://dx.doi.org/10.1063/1.125936
9.
9. D. Goll, H. Kronmüller, and H. H. Stadelmaier, J. Appl. Phys. 96, 6534 (2004).
http://dx.doi.org/10.1063/1.1809250
10.
10. R. Andreescu and M. J. O'Shea, J. Appl. Phys. 91, 8183 (2002);
http://dx.doi.org/10.1063/1.1449449
10. E. E. Fillerton, J. S. Jiang, C. Rehm, C. H. Sowers, S. D. Bader, J. B. Patel, and X. Z. Wu, Appl. Phys. Lett. 71, 1579 (1997).
http://dx.doi.org/10.1063/1.119970
11.
11. C. Prados and G. C. Hadjipanayis, J. Appl. Phys. 83, 6253 (1998);
http://dx.doi.org/10.1063/1.367804
11. C. Prados, A. Hernando, G. C. Hadjipanayis, and J. M. González, J. Appl. Phys. 85, 6148 (1999).
http://dx.doi.org/10.1063/1.370025
12.
12. E. E. Fullerton, C. H. Sowers, J. P. Pearson, S. D. Bader, X. Z. Wu, and D. Lederman, Appl. Phys. Lett. 69, 2438 (1996).
http://dx.doi.org/10.1063/1.117663
13.
13. F. J. Cadieu, in Physics of Thin Films, edited by M. H. Francombe and J. Vossen (Academic, Boston, 1992), p. 145.
14.
14. S. H. Aly, T. D. Cheung, L. Wickramasekara, and F. J. Cadieu, J. Appl. Phys. 57, 2147 (1985).
http://dx.doi.org/10.1063/1.334354
15.
15. J. Zhang, Y. K. Takahashi, R. Gopalan, and K. Hono, J. Magn. Magn. Mater. 310, 1 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.07.017
16.
16. E. E. Fullerton, J. S. Jiang, C. H. Sowers, J. E. Pearson, and S. D. Bader, Appl. Phys. Lett. 72, 380 (1998).
http://dx.doi.org/10.1063/1.120743
17.
17. F. J. Cadieu, H. Hegde, and K. Chen, J. Appl. Phys. 67, 4969 (1990).
http://dx.doi.org/10.1063/1.344719
18.
18. H. Hegde, P. Samarasekara, R. Rani, A. Navarathna, K. Tracy, and F. J. Cadieu, J. Appl. Phys. 76, 6760 (1994).
http://dx.doi.org/10.1063/1.358123
19.
19. V. Neu and S. A. Shaheen, J. Appl. Phys. 86, 7006 (1999).
http://dx.doi.org/10.1063/1.371786
20.
20. H. Hegde, S. U. Jen, K. Chen, and F. J. Cadieu, J. Appl. Phys. 73, 5926 (1993).
http://dx.doi.org/10.1063/1.353523
21.
21. X. Y. Xiong and T. R. Finlayson, Ultramicroscopy 107, 781785 (2007).
http://dx.doi.org/10.1016/j.ultramic.2007.02.009
22.
22. J. Y. Wang, M. K. Ghantasala, D. K. Sood, and P. J. Evans, Thin Solid Films 489, 192 (2005);
http://dx.doi.org/10.1016/j.tsf.2005.05.033
22. A. Singh, V. Neu, R. Tamm, K. Subba Rao, S. Fähler, W. Skrotzki, L. Schultz, and B. Holzapfel, Appl. Phys. Lett. 87, 072505 (2005).
http://dx.doi.org/10.1063/1.2011787
23.
23. D. Goll, H. H. Stadelmaier, and H. Kronmueller, Scr. Mater. 63, 243 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.03.066
24.
24. R. E. Honing and D. A. Kramer, RCA Rev. 30, 285 (1969);
24. J. F. Liu, M. Marinescu, P. Vora, S. X. Wu, and M. P. Harmer, J. Appl. Phys. 105, 07A737 (2009).
http://dx.doi.org/10.1063/1.3072764
25.
25. X.-M. Li, Y.-K. Fang, Z.-H. Guo, T. Liu, Y. Guo, W. Li, and B.-S. Han, Chin. Phys. B 17, 2281 (2008).
http://dx.doi.org/10.1088/1674-1056/17/6/058
26.
26. J. D. Livingston and D. L. Martin, J Appl. Phys. 48, 1350 (1977);
http://dx.doi.org/10.1063/1.323729
26. A. E. Ray. J. Appl. Phys. 55, 2094 (1984).
http://dx.doi.org/10.1063/1.333575
27.
27. E. Lectard, C. H. Allibert, and R. Ballou, J. Appl. Phys. 75, 6277 (1994).
http://dx.doi.org/10.1063/1.355423
28.
28. H. Kronmueller, Phys. Status Solidi B 144, 385 (1987);
http://dx.doi.org/10.1002/pssb.v144:1
28. H. Kronmuller, Supermagnets, Hard Magnetic Material, edited by G. J. Long and F. Grandjean (Kluwer Academic Publisher, Dordrecht, 1991), p. 461.
29.
29. H. Kronmueller and D. Goll, Scr. Mater. 47, 545 (2002).
http://dx.doi.org/10.1016/S1359-6462(02)00177-X
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/10/10.1063/1.4867916
Loading
/content/aip/journal/jap/115/10/10.1063/1.4867916
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/10/10.1063/1.4867916
2014-03-12
2016-12-08

Abstract

We have investigated the effect of annealing temperature on the microstructure and magnetic properties of Sm(CoCuFeZr) films prepared using ion beam sputtering at room temperature. The as-deposited film shows randomly oriented polycrystalline grains and exhibits small coercivity ( ) of 0.04 T at room temperature. Post annealing of these films at 700 °C under Ar atmosphere shows significant changes in the microstructure transforming it to the development of cellular growth, concomitant with enhanced coercivity up to 1.3 T. The enhanced coercivity is explained using the domain wall pinning mechanism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/10/1.4867916.html;jsessionid=JepjZgmGb5KJ5Z0Kzr3VrzGK.x-aip-live-03?itemId=/content/aip/journal/jap/115/10/10.1063/1.4867916&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/10/10.1063/1.4867916&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/10/10.1063/1.4867916'
Right1,Right2,Right3,