1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/11/10.1063/1.4868585
1.
1. B. Jaffe, R. S. Roth, and S. Marzullo, J. Res. Natl. Bur. Stand. 55, 239 (1955).
http://dx.doi.org/10.6028/jres.055.028
2.
2. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971).
3.
3. T. R. Shrout and S. J. Zhang, J. Electroceram. 19, 185 (2007).
http://dx.doi.org/10.1007/s10832-007-9095-5
4.
4. J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03061.x
5.
5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
6.
6. E. Cross, Nature 432, 24 (2004).
http://dx.doi.org/10.1038/nature03142
7.
7. S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, J. Appl. Phys. 100, 104108 (2006).
http://dx.doi.org/10.1063/1.2382348
8.
8. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, and X. Lou, Appl. Phys. Lett. 103, 052906 (2013).
http://dx.doi.org/10.1063/1.4817517
9.
9. B. Y. Zhang, J. G. Wu, X. J. Cheng, X. P. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, ACS Appl. Mater. Interface 5(16), 7718 (2013).
http://dx.doi.org/10.1021/am402548x
10.
10. J. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, and Y. H. Jiang, J. Appl. Phys. 102, 114113 (2007).
http://dx.doi.org/10.1063/1.2822454
11.
11. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).
http://dx.doi.org/10.1063/1.1813636
12.
12. E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 87, 182905 (2005).
http://dx.doi.org/10.1063/1.2123387
13.
13. X. J. Cheng, J. G. Wu, X. J. Lou, X. J. Wang, X. P. Wang, D. Q. Xiao, and J. G. Zhu, ACS Appl. Mater. Interfaces 6(2), 750 (2014).
http://dx.doi.org/10.1021/am404793e
14.
14. D. Lin, K. W. Kwok, and H. L. W. Chan, Appl. Phys. A 91, 167 (2008).
http://dx.doi.org/10.1007/s00339-007-4391-0
15.
15. G. Zang, J. Wang, H. Chen, W. Su, C. Wang, P. Qi, B. Ming, J. Du, L. Zheng, S. Zhang, and T. R. Shrout, Appl. Phys. Lett. 88, 212908 (2006).
http://dx.doi.org/10.1063/1.2206554
16.
16. R. Zuo and J. Fu, J. Am. Ceram. Soc. 94(5), 1467 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04256.x
17.
17. Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, J. Am. Ceram. Soc. 90(11), 3485 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.01962.x
18.
18. P. Zhao, B. P. Zhang, and J. F. Li, Appl. Phys. Lett. 90, 242909 (2007).
http://dx.doi.org/10.1063/1.2748088
19.
19. Z. Y. Shen, Y. Zhen, K. Wang, and J. F. Li, J. Am. Ceram. Soc. 92(8), 1748 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03128.x
20.
20. P. Zhao, B. P. Zhang, and J. F. Li, Scr. Mater. 58, 429 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2007.10.028
21.
21. W. Liang, D. Xiao, W. Wu, X. Li, Y. Sun, and J. Zhu, Curr. Appl. Phys. 11, S138 (2011).
http://dx.doi.org/10.1016/j.cap.2011.03.040
22.
22. J. F. Li, K. Wang, B. P. Zhang, and L. M. Zhang, J. Am. Ceram. Soc. 89(2), 706 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00743.x
23.
23. F. Rubio-Marcos, P. Ochoa, and J. F. Fernandez, J. Eur. Ceram. Soc. 27, 4125 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.110
24.
24. J. Yoo, K. Lee, K. Chung, S. Lee, K. Kim, J. Hong, S. Ryu, and C. Lhee, Jpn. J. Appl. Phys., Part 1 45(9B), 7444 (2006).
http://dx.doi.org/10.1143/JJAP.45.7444
25.
25. H. Du, F. Tang, F. Luo, W. Zhou, S. Qu, and Z. Pei, Mater. Sci. Eng. B 137, 175 (2007).
http://dx.doi.org/10.1016/j.mseb.2006.11.020
26.
26. K. Wang and J. F. Li, Adv. Funct. Mater. 20(12), 1924 (2010).
http://dx.doi.org/10.1002/adfm.201000284
27.
27. Y. H. Lee, J. H. Cho, B. I. Kim, and D. K. Choi, Jpn. J. Appl. Phys., Part 1 47(6), 4620 (2008).
http://dx.doi.org/10.1143/JJAP.47.4620
28.
28. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, J. Am. Chem. Soc. 136, 2905 (2014).
http://dx.doi.org/10.1021/ja500076h
29.
29. X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, B. Zhang, X. Lou, and J. Zhu, J. Mater. Chem. A 2(12), 4122 (2014).
http://dx.doi.org/10.1039/c3ta15075e
30.
30. K. Wang, J. F. Li, and N. Liu, Appl. Phys. Lett. 93, 092904 (2008).
http://dx.doi.org/10.1063/1.2977551
31.
31. M. S. Kim, D. S. Lee, E. C. Park, S. J. Jeong, and J. S. Song, J. Eur. Ceram. Soc. 27, 4121 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.194
32.
32. C. A. Randall, N. Kim, J. P. Kucera, W. W. Cao, and T. R. Shrout, J. Am. Ceram. Soc. 81(3), 677 (2005).
33.
33. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B 70, 024107 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.024107
34.
34. P. K. Palei and P. Kumar, Jpn. J. Appl. Phys., Part 1 51, 011503 (2012).
http://dx.doi.org/10.1143/JJAP.51.011503
35.
35. S. T. Matxhias and J. P. Remeika, Phys. Rev. 82(5), 727 (1951).
http://dx.doi.org/10.1103/PhysRev.82.727
36.
36. C. E. Seo and D. Y. Yoon, J. Am. Ceram. Soc. 88(4), 963 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2005.00213.x
37.
37. M. S. Kim, J. G. Fisher, and S. J. L. Kang, J. Am. Ceram. Soc. 89(4), 1237 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00883.x
38.
38. J. P. vander Eerden, “ Crystal growth mechanism,” in Handbook of Crystal Growth, Vol. 1 Fundamentals, Part A, Thermodynamics and Kinetics, edited by D. T. J. Hurle (Elsevier Science Publishers, Amsterdam, the Netherlands, 1993), pp. 311475.
39.
39. S. J. L. Kang and S. M. Han, MRS Bull. 20(2), 33 (1995).
http://dx.doi.org/10.1557/S0883769400049198
40.
40. C. W. Park and D. Y. Yoon, J. Am. Ceram. Soc. 85(6), 1585 (2002).
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00316.x
41.
41. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie, and K. J. Hemker, J. Appl. Phys. 89, 1336 (2001).
http://dx.doi.org/10.1063/1.1325005
42.
42. M. Takahashi, Jpn. J. Appl. Phys., Part 1 9, 1236 (1970).
http://dx.doi.org/10.1143/JJAP.9.1236
43.
43. W. Cao and C. A. Randall, J. Phys. Chem. Solids 57(10), 1499 (1996).
http://dx.doi.org/10.1016/0022-3697(96)00019-4
44.
44. G. Arlt and N. A. Pertsev, J. Appl. Phys. 70(4), 2283 (1991).
http://dx.doi.org/10.1063/1.349421
45.
45. J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, J. Li, and J. Zhu, Scr. Mater. 59(7), 750 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2008.06.011
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/11/10.1063/1.4868585
Loading
/content/aip/journal/jap/115/11/10.1063/1.4868585
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/11/10.1063/1.4868585
2014-03-19
2015-05-25

Abstract

The objective of this work is to achieve a giant piezoelectric constant in (K,Na)NbO-based lead-free ceramics, and then 0.96K Na Nb SbO-0.04Bi (Na K)ZrO lead-free piezoceramics were designed and prepared by optimizing the sintering temperature ( ). The rhombohedral-tetragonal phase boundary is found in the ceramics sintered at 1070 ∼ 1105 °C and is suppressed when sintered at low of 1060 ∼ 1065 °C. The threshold for is 1070 °C in terms of their ferroelectric and piezoelectric properties owing to the difference in the phase boundary and the microstructure, and a large of 388 ∼ 465 pC/N could be attained in a wide range of 1070 ∼ 1105 °C, benefiting their practical applications because of broad . More interestingly, the ceramic sintered at 1075 °C has a giant of ∼465 pC/N. We think that such a giant of this material system can benefit the development of (K,Na)NbO-based piezoceramics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/11/1.4868585.html;jsessionid=1bt35s3jlpod1.x-aip-live-06?itemId=/content/aip/journal/jap/115/11/10.1063/1.4868585&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: New potassium-sodium niobate lead-free piezoceramic: Giant-d33 vs. sintering temperature
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/11/10.1063/1.4868585
10.1063/1.4868585
SEARCH_EXPAND_ITEM