Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/11/10.1063/1.4869132
1.
1. C.-S. Tu, I. G. Siny, and V. H. Schmidt, Phys. Rev. B 49, 11550 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.11550
2.
2. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, J. Electroceram. 29, 71 (2012).
http://dx.doi.org/10.1007/s10832-012-9742-3
3.
3. G. Burns and F. H. Dacol, Solid State Commun. 48, 853 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90132-1
4.
4. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).
http://dx.doi.org/10.1063/1.346425
5.
5. G. Xu, G. Shirane, J. R. D. Copley, and P. M. Gehring, Phys. Rev. B 69, 064112 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.064112
6.
6. G. A. Samara, J. Phys.: Condens. Matter 15, R367 (2003).
http://dx.doi.org/10.1088/0953-8984/15/9/202
7.
7. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2011.04952.x
8.
8. A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).
http://dx.doi.org/10.1007/s10853-005-5915-7
9.
9. E.-M. Anton, W. Jo, D. Damjanovic, and J. Rödel, J. Appl. Phys. 110, 094108 (2011).
http://dx.doi.org/10.1063/1.3660253
10.
10. M. Davies, E. Aksel, and J. L. Jones, J. Am. Ceram. Soc. 94, 1314 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04441.x
11.
11. J. Toulouse, B. E. Vugmeister, and R. Pattnaik, Phys. Rev. Lett. 73, 3467 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3467
12.
12. B. E. Vugmeister, Phys. Rev. B 73, 174117 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.174117
13.
13. E. Sapper, S. Schaab, W. Jo, T. Granzow, and J. Rödel, J. Appl. Phys. 111, 014105 (2012).
http://dx.doi.org/10.1063/1.3674275
14.
14. W. Ge, D. Maurya, J. Li, S. Priya, and D. Viehland, Appl. Phys. Lett. 102, 222905 (2013).
http://dx.doi.org/10.1063/1.4809940
15.
15. W. Jo, J. Daniels, D. Damjanovic, W. Kleemann, and J. Rödel, Appl. Phys. Lett. 102, 192903 (2013).
http://dx.doi.org/10.1063/1.4805360
16.
16. G. O. Jones and P. A. Thomas, Acta Cryst. B 58, 168 (2002).
http://dx.doi.org/10.1107/S0108768101020845
17.
17. A. O'Brien, D. I. Woodward, K. Sardar, R. I. Walton, and P. A. Thomas, Appl. Phys. Lett. 101, 142902 (2012).
http://dx.doi.org/10.1063/1.4755882
18.
18. E. Aksel, J. S. Forrester, B. Kowalski, M. Deluca, D. Damjanovic, and J. L. Jones, Phys. Rev. B 85, 024121 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024121
19.
19. S. Gorfman, A. M. Glazer, Y. Noguchi, M. Miyayama, H. Luod, and P. A. Thomas, J. Appl. Cryst. 45, 444 (2012).
http://dx.doi.org/10.1107/S0021889812008217
20.
20. C. Ma, X. Tan, E. Dul'kin, and M. Roth, J. Appl. Phys. 108, 104105 (2010).
http://dx.doi.org/10.1063/1.3514093
21.
21. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., Part 1 38, 5564 (1999).
http://dx.doi.org/10.1143/JJAP.38.5564
22.
22. M. Otoničar, S. D. Škapin, M. Spreitzer, and D. Suvorov, J. Eur. Ceram. Soc. 30, 971 (2010).
http://dx.doi.org/10.1016/j.jeurceramsoc.2009.10.006
23.
23. Y. Hiruma, H. Nagata, and T. Takenaka, J. Appl. Phys. 104, 124106 (2008).
http://dx.doi.org/10.1063/1.3043588
24.
24. R. Dittmer, W. Jo, J. Daniels, S. Schaab, and J. Rödel, J. Am. Ceram. Soc. 94, 4283 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04631.x
25.
25. O. Elkechai, M. Manier, and J. P. Mercurio, Phys. Status Solidi A 157, 499 (1996).
http://dx.doi.org/10.1002/pssa.2211570234
26.
26. M. R. Suchomel, A. M. Fogg, M. Allix, H. J. Niu, J. B. Claridge, and M. J. Rosseinsky, Chem. Mater. 18, 4987 (2006).
http://dx.doi.org/10.1021/cm061085r
27.
27. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., Part 1 30, 2236 (1991).
http://dx.doi.org/10.1143/JJAP.30.2236
28.
28. G. New, Introduction to Nonlinear Optics (Cambridge University Press, 2011).
29.
29. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New Jersey, 2003).
30.
30. J. P. Dougherty and S. K. Kurtz, J. Appl. Cryst. 9, 145 (1976).
http://dx.doi.org/10.1107/S0021889876010789
31.
31. S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, J. Am. Ceram. Soc. 94, 2699 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04740.x
32.
32. K. Betzler and D. Bäuerle, Appl. Phys. 18, 271 (1979).
http://dx.doi.org/10.1007/BF00885513
33.
33. M. Pavel, I. Rychetský, P. Kužel, and M. Kosec, Ferroelectrics 238, 291 (2000).
http://dx.doi.org/10.1080/00150190008008795
34.
34. K. Fujishiro, T. Iwase, Y. Uesu, Y. Yamada, B. Dkhil, J.-M. Kiat, S. Mori, and N. Yamamoto, J. Phys. Soc. Jpn. 69, 2331 (2000).
http://dx.doi.org/10.1143/JPSJ.69.2331
35.
35. J. Kroupa, V. Bovtun, D. Nuzhnyy, M. Savinov, P. Vanek, S. Kamba, J. Petzelt, J. Holc, M. Kosec, H. Amorín, and M. Alguero, Phase Trans. 81, 1059 (2008).
http://dx.doi.org/10.1080/01411590802457987
36.
36. H. Yokota, T. Oyama, and Y. Uesu, Phys. Rev. B 72, 144103 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.144103
37.
37. H. Yokota, Y. Uesu, C. Malibert, and J.-M. Kiat, Phys. Rev. B 75, 184113 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.184113
38.
38. D. V. Isakov, T. R. Volk, and L. I. Ivleva, Phys. Solid State 51, 2334 (2009).
http://dx.doi.org/10.1134/S1063783409110237
39.
39. S. K. Kurtz and T. T. Perry, J. Appl. Phys. 39, 3798 (1968).
http://dx.doi.org/10.1063/1.1656857
40.
40. Handbook of Chemistry and Physics, edited by W. M. Haynes (CRC Press, Boca Raton, 2011).
41.
41. N. Masó, D. I. Woodward, P. A. Thomas, A. Várez, and A. R. West, J. Mater. Chem. 21, 2715 (2011).
http://dx.doi.org/10.1039/c0jm02540b
42.
42. K. Datta, P. A. Thomas, and K. Roleder, Phys. Rev. B 82, 224105 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.224105
43.
43. J. Kreisel, A. M. Glazer, G. Jones, P. A. Thomas, L. Abello, and G. Lucazeau, J. Phys: Condens. Matter 12, 3267 (2000).
http://dx.doi.org/10.1088/0953-8984/12/14/305
44.
44. B. Wylie-van Eerd, D. Damjanovic, N. Klein, N. Setter, and J. Trodahl, Phys. Rev. B 82, 104112 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.104112
45.
45. J. Kreisel, A. M. Glazer, P. Bouvier, and G. Lucazeau, Phys. Rev. B 63, 174106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.174106
46.
46. A. Kumar, I. Rivera, and R. S. Katiyar, J. Raman Spectrosc. 40, 459 (2009).
http://dx.doi.org/10.1002/jrs.2153
47.
47. R. Farhi, M. El Marssi, A. Simon, and J. Ravez, Eur. Phys. J. B 9, 599 (1999).
http://dx.doi.org/10.1007/s100510050803
48.
48. M. S. Islam, S. Tsukada, W. Chen, Z.-G. Ye, and S. Kojima, J. Appl. Phys. 112, 114106 (2012).
http://dx.doi.org/10.1063/1.4768278
49.
49. M. Bousquet, J.-R. Duclère, E. Orhan, A. Boulle, C. Bachelet, and C. Champeaux, J. Appl. Phys. 107, 104107 (2010).
http://dx.doi.org/10.1063/1.3400095
50.
50. R. Dittmer, W. Jo, J. Rödel., S. Kalinin, and N. Balke, Adv. Funct. Mater. 22, 42084215 (2012).
http://dx.doi.org/10.1002/adfm.201200592
51.
51. C. Michel and A. Sicignano, Appl. Phys. Lett. 24, 559 (1974).
http://dx.doi.org/10.1063/1.1655053
52.
52. W. Kleemann, J. Mater. Sci. 41, 129 (2006).
http://dx.doi.org/10.1007/s10853-005-5954-0
53.
53. A. M. Glazer, P. A. Thomas, K. Z. Baba-Kishi, G. K. H. Pang, and C. W. Tai, Phys. Rev. B 70, 184123 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.184123
54.
54. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rödel, J. Appl. Phys. 110, 074106 (2011).
http://dx.doi.org/10.1063/1.3645054
55.
55. S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rödel, J. Appl. Phys. 103, 034108 (2008).
http://dx.doi.org/10.1063/1.2838476
56.
56. S.-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, and J. Rödel, J. Appl. Phys. 103, 034107 (2008).
http://dx.doi.org/10.1063/1.2838472
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/11/10.1063/1.4869132
Loading
/content/aip/journal/jap/115/11/10.1063/1.4869132
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/11/10.1063/1.4869132
2014-03-21
2016-09-26

Abstract

The loss of macroscopic polarisation in relaxor ferroelectric (NaK)BiTiO ceramics doped with BiZnTiO has been studied by electrical and structural methods. These indicate that the phenomena that are coupled in a displacive phase transition are not necessarily coupled in the depolarisation of NaBiTiO-based relaxors and a concept of correlated and uncorrelated switching of dipoles within adjacent unit cells is used to explain this. Second harmonic generation performed on poled ceramics during heating yields values of the freezing temperature and shows a broad temperature range of ∼100 °C across which the structure changes from field-induced ferroelectric to an equilibrium-state ergodic relaxor. Electrical poling at room temperature causes poled regions to increase in size by ∼2 orders of magnitude. A model illustrating the main steps in thermal depolarisation is described that does not require a phase transition to take place on a unit cell level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/11/1.4869132.html;jsessionid=XIgys_bH3g2MqUiBQ8JoWgWJ.x-aip-live-06?itemId=/content/aip/journal/jap/115/11/10.1063/1.4869132&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/11/10.1063/1.4869132&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/11/10.1063/1.4869132'
Right1,Right2,Right3,