Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/115/12/10.1063/1.4869140
1.
1. A. Okhotin, A. Efremov, V. Okhotin, and A. Pushkarskii, Thermoelectric Generators (Ft. Belvoir Defense Technical Information Center, Charlottesville, VA, USA, 1972).
2.
2. Lord Rayleigh, Philos. Mag. 20, 361 (1885).
http://dx.doi.org/10.1080/14786448508627771
3.
3. M. Telkes, “ The efficiency of thermoelectric generators I,” J. Appl. Phys. 18, 1116 (1947).
http://dx.doi.org/10.1063/1.1697593
4.
4. A. Ioffe, Physics of Semiconductors (Academic Press, New York, USA, 1960).
5.
5. E. Altenkirch, Phys. Zeitschrift 10, 560580 (1909).
6.
6. H. Goldsmid, Applications of Thermoelectricity (Methuen, 1960).
7.
7. I. Cadoff and E. Miller, Thermoelectric Materials and Devices (Reinhold Publishing Cooperation, New York, USA, 1960).
8.
8. R. Heikes and R. Ure, “Thermoelectricity: Science and Engineering” (Interscience Publishers, 1961).
9.
9. G. Sutton, Direct Energy Conversion (McGraw-Hill, 1966).
10.
10. T. Harman and J. Honig, Thermoelectric and thermomagnetic effects and applications (McGraw-Hill, 1967).
11.
11. F. Rosi, “ Thermoelectricity and thermoelectric power generation,” Solid-State Electron. 11, 833868 (1968).
http://dx.doi.org/10.1016/0038-1101(68)90104-4
12.
12. M. Cobble, Calculations of Generator Performance (CRC Press, Boca Raton, FL, USA, 1995), Chap. 39.
13.
13. H. Goldsmid, CRC Handbook of Thermoelectrics, edited by D. M. Rowe (Springer, New York, USA, 1995).
14.
14. G. Min, Thermoelectric Module Design Theories (CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2006), Chap. 11.
15.
15. H. Goldsmid, Introduction to Thermoelectricity (Springer-Verlag, New York, USA, 2010).
16.
16. R. McCarty, “ Thermoelectric power generator design for maximum power: It's all about ZT,” J. Electron. Mater. 42, 15041508 (2012).
http://dx.doi.org/10.1007/s11664-012-2299-8
17.
17. K. Yazawa and A. Shakouri, “ Optimization of power and efficiency of thermoelectric devices with asymmetric thermal contacts,” J. Appl. Phys. 111, 024509 (2012).
http://dx.doi.org/10.1063/1.3679544
18.
18. M. Gomez, R. Reid, B. Ohara, and H. Lee, “ Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting,” J. Appl. Phys. 113, 174908 (2013).
http://dx.doi.org/10.1063/1.4802668
19.
19. M. Freunek, M. Muller, T. Ungan, W. Walker, and L. M. Reindl, “ New physical model for thermoelectric generators,” J. Electron. Mater. 38, 12141220 (2009).
http://dx.doi.org/10.1007/s11664-009-0665-y
20.
20. Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, “ Comment on “Effective thermal conductivity in thermoelectric materials”,” J. Appl. Phys. 115, 126101 (2014).
http://dx.doi.org/10.1063/1.4869138
21.
21. L. Baranowski, G. Snyder, and E. Toberer, “ Effective thermal conductivity in thermoelectric materials,” J. Appl. Phys. 113, 204904 (2013).
http://dx.doi.org/10.1063/1.4807314
22.
22. G. J. Snyder, Thermoelectric Power Generation: Efficiency and Compatibility (CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, 2006), Chap. 9.
http://aip.metastore.ingenta.com/content/aip/journal/jap/115/12/10.1063/1.4869140
Loading
/content/aip/journal/jap/115/12/10.1063/1.4869140
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/115/12/10.1063/1.4869140
2014-03-24
2016-09-30

Abstract

It is commonly claimed that achieving maximum power from a thermoelectric generator necessitates electrical load matching conditions instead of the operating condition derived for maximum generator efficiency. Here, we explain why the electrical load matching claim for maximum power in a design optimization is flawed and show that the load condition derived for maximum efficiency always produces more power. Finally, we consider a CPM generator, and prove that the electrical condition for maximum efficiency is indeed the electrical condition for maximum power, maximum power density, maximum power/cost of thermoelectric material, and maximum power/weight of thermoelectric material, when the leg length of the thermoelectric generator is a design variable.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/115/12/1.4869140.html;jsessionid=lLeJjmXWOfJi2agEzHXVaf7U.x-aip-live-06?itemId=/content/aip/journal/jap/115/12/10.1063/1.4869140&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/115/12/10.1063/1.4869140&pageURL=http://scitation.aip.org/content/aip/journal/jap/115/12/10.1063/1.4869140'
Right1,Right2,Right3,